
·1

))

•

Training and Education
Presents:

OS-9 System Overview

)
•'

:-

))

OS-9 Memory Modules

The OS-9 memory module is the basic unit of data within the system. All executables are placed
within modules which the kernel can recognize by a unique name. The kernel can also identify any
module based on its general type and purpose. All modules share a common architecture, as seen
below.

Header

Body

CRC

Section: OS-9 Overview

)

24

Module Directory

All modules the kernel knows about are kept in the module directory on the system. 1bis is just a
table the kernel uses to keep track of all modules . When a module is needed and specified by name, the
kernel searches this directory for the requested module. If it can not be found, the error E_MNF
(module not found) is reported .

The module directory may be displayed by using the mdir utility. In the standard use, this pro­
gram simply shows the names of all modules currently available in memory. The extended form of this
command (mdir -e) shows much more information about each module , including its current address,
size, type, language , attributes, revision, edition, and permissions.

$ mdir -e
Addr Size

00009100 28292
000144d0 926

Section: OS-9 Overview

Owner Perm Type Revs Ed # Lnk Module Name

0.0
0.0

---- ---- ---- ----
0555 Sys a00Q 244
0555 Sys 8000 39

2 kernel
3 init

\
I

25

,,

~

Items on the Mdir Line

The Lnk field specifies the link count of the module . This gives the system an idea as to how
many times the module has been linked to. When you start the "dir" command, the dir module has its
link count incremented by one. When the dir process completes, the link count of the dir module is dec­
remented by one. Many modules will disappear when their link count reaches zero to make room for
other modules on the system.

The Ed# field contains the edition number of the module. A module's edition number is a 16 bit
value that means absolutely nothing to the system! This number allows for a convenient means of iden­
tifying one version of a module versus another. When a customer contacts Microware 's technical sup­
port concerning a problem with a certain module, the support engineer can identify bug fixes that have
occurred between the users edition and the current edition, possibly saving time in the debug process.

The field labeled Revs is actually two fields: an attributes section and a revision value. Each half
of this field is eight bits, with attributes in the high-order section of the field. The revisions section is
unstructured , but significant. When an explicit request to load the modules of a file is made, there is
always the possibility that a module in memory shares the same name as one on disk. When this hap­
pens, the kernel compares the revision sections of each of the modules. If the module on disk has a
smaller (or equal) value compared to the one in memory, the module in memory has its link count

Section: OS-9 Overview

·,
I

~

~

26 '·

,,

~

)

incremented. However, if the module on disk has a revision which exceeds that in memory, this module
is considered to be more recent and replaces the older module in memory. (Processes currently using
the older module continue to use it; any new requests for the module of that name are granted to the
new module.)

The attributes section has three bits of significance currently, corresponding to the attributes of reen­
trancy, system state, and stickiness. Modules under OS-9 are generally reentrant, meaning they may be
used simultaneously by several processes. To accomplish that, the module must not be self-modifying.
(Microware's high level language compilers generate non-self modifying code.) If a module does not
have the reentrant attribute, then when a link request is made of the module, that request will fail if the
module already has a non-zero link count.

The sticky attribute determines what happens when the link count of the module reaches zero. If a mod­
ule does not have the sticky attribute, it is generally removed from memory when the link count reaches
zero. However, if the sticky bit is present, it will remain in memory with a zero link count.

Valid states are system and user state, corresponding to privileged versus normal cpu access. The state
attribute defines what state a module executes in. System state is typically reserved for device drivers
and other operating system· extensions.

Type is another two item field; this one contains the modules type and language specifications.

Section: OS-9 Overview

~

~

27

)

~

~

The kernel uses the type section to determine which of the known module types it is looking at. These
types include program modules (Prog), device drivers (Driv), file managers (FMan), system modules
(Sys) among others.

The language field is mainly under-utilized. Currently, the only language used is "68k object." Since
not all modules are executable code, there is also a wildcard language representing a don't care state.

The next field to the left is the module permissions. This field contains three sections: one for the
owner of the module, one for members of the same group as the module owner, and one for all other
users. Each section has three significant bits which are used to determine read, write, and execute
access for the module.

The owner field simply identifies who owns the particular module.

The size field reports the length of the module, in bytes.

Finally, the address field tells the address of the first byte of the module in its current location.
This address may change from one loading of the module to the next. (This is why OS-9 executables
must be position independent.)

Section: OS-9 Overview

)

~

~

28

,,

I-

~

) ,,

Modules vs. Files

Although it is a common mistake , the term module cannot be used interchangeably with the term
file. A file is something that lives on disk, and may hold a module . A file also may hold more than one
module, and can be completely devoid of any modules . When the "dir" command is typed into the
shell, the system must be able to find the module called dir in memory to complete the request. H that
module cannot be found, the system will search the disk for a file called dir. (The system will search the
users current execution directory first, and then along the contents of the user' s PATH environment
variable .) If the module is not found but a file whose name is identical to the command is, the mod­
ule(s) within that file are loaded into memory, and the system will execute the first module found in the
file. This means that the name of the file to be executed does not have to be the same as the name of the
file itself.

Section: OS-9 Overview

~

~

29

)
•'

,,

~

)

Resident Module Oriented Commands

mdir - display a list of all modules in memory

ident - display identifying information about certain modules

load - place modules from a file into memory

unlink - decrement the link count of a module, possibly removing it from memory

save - copy the contents of a module in memory to disk

fixmod - change certain pieces of information from the header of a module

moded - edit the body of certain types of modules (This command is not currently supported
under OS-9000.)

Section: OS-9 Overview

\

)

~

~

30

)

~cloc

init

Section: OS-9 Overview

OS-9 1/0 Sub-System Structure

Kernel

--­
' --­---

CSL I I IOMan

_J
RBF

00
N -~ CJ

i ~
~ {ll

,Q ,Q
{ll I-, I-, CJ

/tenn /tlO /hO
/tl /tll /dd
/t2 /t12
/t3 /t13

-

User App's
and Utils

...
~ =-·s::

,Q
{ll

/rntO

)
,,

31

I,

~

)
•'

OS-9 Devices

A device under OS-9 is some entity, usually hardware, which requires some system level control.
To satisfy this requirement, all devices under OS-9 should have a file manager, device driver, and
device descriptor associated with them. For example, the ram disk on this system requires the RBF file
manager, the ram device driver, and the rO device descriptor.

The file manager is sort of a generic device driver. These code modules are the interface between
ioman and the device's driver. The file manager knows the generalities of a specific class of device,
such as a sequential character device, or a random block device. They do not know how to control the
actual hardware, but rather know how to perform some of the tasks that all drivers need to do and thus
provide for more simplified device drivers. (The device driver writer can concentrate on the hardware
and the interface to the file manager , without concern for higher level system activities.)

The device descriptor does not contain any executable code, but rather contains data (in a pre­
defined format) describing the actual device of interest. Items in this description include the names of
the file manager and device driver for the hardware , as well as the physical address for the device and
customization details for the file manager and driver.

Section: OS-9 Overview

)

"

-!J

32

,,

~

J

Using OS-9 Devices

Before a device may be used, it must be recognized by the system . This just entails initializing
the device, which can be done with the iniz command. For example,

$ iniz rO

is a request to initialize the device represented by a descriptor named r0. (The devs command shows all
devices that are currently initialized.) Once the device is initialized, it is accessed based on its name .
For example, to create a file called test in the root directory of the r0 device, you would create the file
named /rO/test.

New devices may be added to OS-9 while the system is running, and devices may also be
removed while the system is running. To add a new device, the descriptor, driver, and file manager
must all be in memory. Once that is the case, simply using the-device adds it to the system. (A device
that is not initialized prior to use will become initialized, but it will become non-initialized when use of
the device ends. This can lead to fragmented memory .)

Section: OS-9 Overview

~

~

33

)

,,

~

,/

Process Creation

View the output of the procs -e command and you will see many pieces of information concern­
ing each of the processes currently on your OS-9 system. Each process on the system has a block of
data called a process descriptor which is used to maintain the process throughout its lifetime. The infor­
mation displayed by procs comes from the process descriptor .

In order to place a new process on the system, a process descriptor for the process must be cre­
ated. The system has tools in place to make this task easy. Through Ultra-C, the _os_exec() function is
used.

The vos utility has a command hook into the _os_exec() call through the command '_os_exec'; it
may be used to create "childl", "child2" , up to "child9 ". It also supports the command 'family' which
shows parent and child information as related to the process under inspection. The "gen X" command ,
where X is an optional process id number, shows general information from the process ' descriptor .

Section: OS-9 Overview

~

•

~

34

)

,,

~

)

Using _os_exec()

This call takes the parameters needed to create the child process. Those parameters include a
pointer to a function, the priority of the process, any additional stack space needed, the name of the
module to execute , the process' environment and argument list, and the number of open paths to pass to
the process. The basic syntax of the call is:

#include <cglob.h> /* to get the _environ variable*/
error_code _os_exec(_os_fork, u_int32 priority,

u_int32 pathcnt, (void *)argv[0], char **argv,
char **envp, u_int32 stacksize, process_id *id, 0, 0);

As it happens, _os_exec() does not perform all of the. work in creating the process descriptor. This is
because there are a few ways the task can be performed. Shown above is the standard way, allowing
one process to create another such that each can run in parallel. The first parameter, _osJork, is the
name of the function that completes the task for us. The next page shows a simple program which cre­
ates a child and waits for it to terminate .

Section: OS-9 Overview

~

~

35

,,

~

fork.c

#include <stdio.h> /* for print£*/
#include <types.h> /* good to have*/
#include <process.h> /* for os_exec - *I
#include <errno.h> /* for errno*/
#include <cglob.h> I* for _environ * /

char *argblk [) = { "dir", "-e", 0};

main ()
{

process_id
status_code

id;
status;

/* create the process*/
errno = _os_exec(_os_fork,0,3, (void*)argblk[O) ,argblk,

_environ,O,&id,0,0);

/* did it work?*/
if (errno != 0) _ os _ exit(errno);

Section: OS-9 Overview

~

..

~

36

)

,,

~

}

' }

printf("Process has been created with id %d\n",id);

/* wait for the process to terminate*/
errno = _os_wait(&id, &status);

/* any problems waiting?*/
if (errno != 0) _os_exit(errno);

/*no.report child exit code and exit*/
printf("Child e,xited with code %d\n",status);
_os_exit(O);

This program can be compiled with cc fork.c.

Section: OS-9 Overview

~

..

~

37

,,

~

Paths

A path is used to perform device 1/0 on the OS-9 system. All paths are represented (to user state
processes) by a number between 0 and 31 inclusive . This number is a table entry describing a system
path number. This system path number describes a data structure called a path descriptor which is used
by the kernel to maintain the 1/0 channel.

When most programs are started, they already have three open paths: standard input (0) , standard
output (1) , and standard error (2). This being the case, the next paths opened will be numbers 3, 4, etc.
The path number assigned to the creating process is always the lowest number which is not being used.
Thus , if you were to close path I and open a new path, it would take position 1, the standard output
path .

At the lowest level, paths are created with the C _os_create() call (or alternatively , the
_os_open() call) and destroyed with the _os_close() call. They are read from and written to with the
_os_read() and _os_write() calls respectively. Also, a path may be duplicated on another number with
the _os_dup() call.

Section: OS-9 Overview

~

~

38

,;

~

'C' Path Calls

All of these calls should have access to the <modes. h> and <types. h> header files. They
also all return a variable of type error _code.

_ os _ create (char *name, u_ int32 mode ·, path_id *path, u_int32 perm, .. .)
Special modes: FAM_SIZE, FAM_NOCREATE;
Note: On OS-9, the _os9_create() function take identical parameters,
and is slightly faster.

_ os _ open (char *name, u_int32 mode, path_id *path) ;

_ os _ dup (path_id path, path_id *new_path);

_ os _ read (path_id pat h , void *buffer, u_int32 *count);

_ os _write (path_id path, voi d *buffer, u_int32 *count);

_ os _ close (path_id pat h);

Section: OS-9 Overview

~

~

39

,,

~

)

Modification of Child 1/0

In order to modify the standard paths of a child process, careful planning and work must occur
before the child is spawned. Assuming the pathcnt parameter to _os_exec() is three, the child will
inherit three open paths from the parent, the three standard paths. If the parent is interested in modify­
ing the standard paths received by. the child, it must modify them for itself before creating the child.
This perhaps sounds destructive to the parent, but with careful use of the _os_dupO call, the parent can
save its state before making modifications and restore it afterwards. For example, pseudo-code for
spawning a child with redirected standard output is as follows:

/* pseduo-code! */
sv_out = dup(l);
close (1) ;
open ("new_output") ;
spawn_child();
close (1) ;
dup (sv_out);
close (sv_out);

Section: OS-9 Overview

/* copy my standard output path*/
/* and destroy the real stdout */
/* open childs output . into my stdout path*/
/* kick child off running* /
/* I don't need this anymore*/
/* restore my stdout */
/* and get rid of saved path*/

"

~

40

., \

I

. - ~

Training and Education
Presents:

OS-9 Inter-Process
Communications

Inter-Process Communication Overview

OS-9 has six built-in methods of performing inter-process communications.

Pipes (data transfer):

Data Modules (data transfer):

Signals (synchronization):

Alarms (synchronization):

Semaphores (synchronization):

Events (synchronization):

sequential message passing (data queue)

shared memory implementation

software generated interrupts

pre-arranged signals

logical binary flags (V3.0 and later)

32 bit flags

Each of these methods of accomplishing IPC has its own advantages over others, but often, more
than one form of IPC can be used to accomplish the desired effect.

Section: OS-9 Overview 42

)

Pipes

Pipes provide a method of placing data inside a first-in, first-out queue that is destroyed as soon
as it is removed (read). There are two types of pipes supported under OS-9: named and unnamed . The
pipe created when one process is "piped" into another is unnamed; it may only be accessed by the pro­
cess that created it and processes th~t are started up with it being in an open path. Named pipes , on the
other hand, may be accessed by any process that knows the name (and has permission based on the user
and group number of the process.) When the command "a ! b" is entered, the standard output of process
"a" is sent into a pipe , and the s~n dard input of the "b" process is fed from the same pipe.

$ procs -e ! grep shell

proc~, ... -+-1 ~ ... grep

Section: OS-9 Overview 43

)
(

•'

When opening any path on the system there must be a name for that path. The name for a named
pipe has the format of "/pipe/name", where name is whatever name the pipe should have. (Although
the pipe device appears as a directory type device, and in fact you can type the command "dir /pipe" to
see the names of named pipes on the system, the system's disk devices, if even present, are not used for
pipes. The pipe directory is flat, that is, you can not have subdirectories within the pipe directory.) Even
opening a path to an unnamed pipe requires some sort of name; the name for all unnamed pipes is
"/pipe". Every request to "/pipe" that succeeds is given a brand new unnamed pipe. (There may be a
virtual unlimited number of unnamed pipes open at one time; all of them have the name /pipe.)

Section: OS-9 Overview 44

j
\
) ,,

Pipe Activity

Table 5: What if you try to ...

Act ion Named Pipe Unnamed Pipe

write to a pipe that Process trying to write to a full named pipe When all processes that have read access to a
is full? enter the 1/0 queue. (No error condition). full unnamed pipe are in the I/O queue (trying

to write), the first writer will receive an
E_ WRITE error.

read from a pipe When all processes with write access to an empty pipe are in the I/O queue (trying to read from
that is emp ty? it), the first reade r will receive an E_READ error.

close a pipe that is A named pipe is deallocated when all pro- Unnamed pipes are deallocat ed when there
not empty? cesses close the pipe and no data remain s. are no more proces ses with the pipe open,

regard less of the amount of data remaining.

create a pipe Just as creating a file whose name is taken; the Non-applicable.
whose name is pipe is either truncated or the cal l fai ls,
taken? depend ing on the presence of

FAM_NOCREATE.

open a pipe that Just as trying to open a non-exi sting file, the Every open to "/p ipe" is the same as creating a
doesn't exist? process will receive an E_PNNF error. (Path new unnamed pipe.

Name Not Found)

Sect-ion: 0S-9 Overview 45

''C" Calls for Pipes

These are some calls that, though not written specifically for use with pipes, lend themselves
greatly towards dealing with pipes. These calls interface (through the kernel and ioman) to the pipe file
manager to get and change information about a pipe. To use them, your program should include the
<types. h> and <sg_codes. h>: header files. They all return an error_code.

_ os _ gs _ ready {path_id path, u_int32 *incount);
This call returns {in incount) the number of characters available.

_ os _ gs _ eof (path_id path);
This call returns E_EOF if a read on this path would return an error
for some process.

_ os _ gs _ size (path_id path, u_int32 *size);
Returns the maximum number of bytes the pipe can hold before blocking .

_ os _ ss _ sendsig (path_id path, signal_code signal);
Installs a pending signal of the specified path, to be sent as soon as
data is available for reading.

_ os _ ss _ relea (path_id path);
Remove a pending signal installed with _os_ss_sendsig().

Section: OS-9 Overview 46

·1

Data Modules

Data modules are memory modules that hold information rather than executable code. These
modules are a method of sharing memory across multiple processes and they also provide a simple
method for saving the state of a program for future recall.

Assume you would like two processes to share some data. You would place these shared "glo­
bal" variables in a structure which resides within a data module. For example,

typedef struct {
char flagl, flag2;
short flag3;
int firstval, secondval;
char message[8];

} datastruct;

can easily be placed within a data module. The map of the module with this structure appears on the
next page.

Section: OS-9 Overview 47

\)

Data Module Map

Header
flagl flag2 flag3

firstval

second val

-- - ----••• "' "'

CRC

Section: OS-9 Overview 48

)

''C'' Code for Data Modules

Before a data module may be used, it must exist in memory! If the module is already in memory,
it can be linked to with the _os_link() function call. If it is not in memory but is inside of a file on disk ,
the contents of the file may be loaded into memory with either the _os_load() or _os_loadp() functions.
If the module is to be created in m~mory, _os_datmod() will be necessary. All of these functions need
access to the <module. h> header file.

_ os _ link(char **mod.name, mh_com **modptr, void **dataptr, u_int16
*typlang, u_int16 *attrev);

_ os _ load (char *filename, mh_com **modptr, void **dataptr, u_int32
mode, u_int16 *typlang, u_int16 *attrev, u_int32 color);

_os _ loadp(char *filename, u_int32.mode, char *nameptr, mh_com
**modptr);

_os_datmod(char *modname, u_int32 size, . u_int16 *attrev, u_int16
*typlang, u_int32 perm, void **dataptr, mh_data **modptr);

Two of the parameters for the above functions are pointers: one to point to the module header
itself, and the other to point to the data area (body) of the module. The module pointer is of a standard

Section: OS-9 Overview

)

49

) ~
•'

variable type, but since the compiler writers could not anticipate the type of data you will place in your
data module, the official type for the data pointer is void.

When an application completes using a data module, it has the responsibility of informing the
kernel so the link count may be decremented. This action is performed through the _os_unli nk() call.
The function _os_unload() will also decrement the link count on a module.

_ os _ u.nlink (mh_com · *modptr) ; 11, ~
_ os_unload(char *modname, u_inct:32 typlang) ;

The program on the next page describes the typical sequence of calls used when preparing to use
data modules.

• ,rJI)
Section: OS-9 Overview

)

50

')
,•

datmod.c

#include <stdio.h>
#include <module.h>
#include <modes.h>
inc 1 ude <errno :'h >

typedef struct {
char flagl, flag2;
u_int16 flag3;
u_int32 firstval, secondval;
char message[8];

} datastruct;

main ()
{

char *dm_name = "dm_name"; /* name of data module * /
mh_data *modptr; /* point to the module header*/
datastruct *dataptr; /* point to the data area*/
u_int16 attrev; /* attribute/revision of module*/
u_int16 typlang; /* type/language of module*/
u_int32 perm; /* module permissions*/

Section: OS-9 Overview

)

51

,,

~

}

)

/* prepare parameters*/
attrev = mkattrevs(MA_REENT, 0);
typlang = mktypelang(MT_DATA, ML_ANY);
perm= MP_OWNER_READIMP_OWNER_WRITEIMP_GROUP_READIMP_GROUP_WRITE;

/* first try to create the module*/
errno = _os_datmod(dm_name,sizeof(datastruct) ,&attrev,

&typlang, perm, (void**)&dataptr, &modptr);

if (errno) {
/* then try to link to it*/
errno = _os_link(&dm_name, (mh_com**)&modptr, (void**)&dataptr,

&typlang, &attrev);

if (errno) {

}

fprintf(stderr,"Couldn't link or create! Error #%d\n", errno);
_os_exit(errno);

fprintf{stderr,"Link was successful!\n");
} else {

fprintf(stderr,"Create was successful ! \n");
}

/* use module to your heart's content*/

fprintf(stderr,"Exiting ! \n");
_os_exit(_os_unlink{{mh_com*)rnodptr));

Section: OS-9 Overview

~

.,;i_..

52

\
_)

Signals

Signals are a form of software generated interrupts. When a signal is received by a process, that
process puts what it is doing on temporary hold, executes a special signal handling routine, and then
resumes to where it left off. (Sort of like a forced asynchronous subroutine call.)

main()
{

}

Section: 0S-9 Overview

sighand(signal_code sigval)
{

}

53

')

To prepare to handle signals, the process must tell the kernel what routine will be the signal han­
dler. If a process receives a signal and has not first informed the kernel about this routine, that process
will be terminated. This handling routine will have access to the 16 bit signal_code that is sent to the
process.

Table 6: Signal Definitions/Ranges

Signal Description

0 Unconditional kill. The signal handler never sees this signal . OS-9 onJy!

I Wake up signal. The signal handler never sees this either.

2 SIGQUIT (Ctrl-E)

3 SIGINT (CtrJ-C)

4 Modem hang up signal. (OS-9000: Unconditional kill)

5 (OS-9000: Modem hang up signal)

2-31 Deadly 1/0 signals . (OS-9000: 2-5)

0-255 Definition reserved by Microware .

256-65535 User defined signals.

Section: 0S-9 Overview 54

)

The system is informed of a process' ability to handle signals via the _os_ intercept() call. For
example:

#include <signal.h>
#include <types .h>
#include <errno.h>
#include <cglob.h> /* get access to _glob_data */

void sighand(signal_code sigval); /* the signal handler*/

main ()
{

errno = _os_intercept((void(*) ())sighand, _glo b_data);
The external variable _glob_da ta is a global that Ultra-C makes available to processes, which

points to their static storage areas.

There is no typical signal handling routine, though most look at the signal that was sent to the
process and take some action based on that signal. What is important, however, is that the signal han­
dling routine use _os_rte() to exit the function at every possible exit. Not exiting in this manner will
cause unpredictable (and usually bad) results to occur.

Actually, a signal handler may return to the main program through a long-jump . However,
returning in this manner will leave the signal context on the stack; the _os_sigreset() function should

Section: OS-9 Overview 55

I)

be used to clear it. Also, signals will remain masked, but can be unmasked via _os_sigmask() .

'
Signals are sent to a process through the function _os_send(), which takes a process id and signal

as parameters. There are two idiosyncracies with this call. If the signal is 0, the unconditional kill sig­
nal, it will only be sent if the sending process and the receiving process are owned by the same user and
group numbers or the sending process is a group zero process. If the process id is 0, the signal is sent to
all other processes on the system owned by the same group and user as the sending process. (This is
called broadcast signaling.)

Since there are times when it would be inconvenient to receive signals, each process has a signal
masking level. This level is an unsigned value which, if non-zero, forces incoming signals to queue up
waiting to be handled . If the level is zero, signals will be received by the signa_l handler. (The signal
handler should increase the masking level upon starting and decrease it upon leaving.) The function
_os_sigmask() takes as valid parameters 1, 0, and -1 to increase , set to zero, and decrease the masking
level respectively . The signal masking level is an eight bit quantity; the system takes steps to insure that
it does not wrap around in either direction. Note, that since signal values 0 and 1 do not queue up to be
serviced, the signal mask has no effect on them. Also, a signal mask does not prevent the signal from
waking a non-active process; it merely delays the calling of the signal handling routine.

Section: OS-9 Overview 56

•

J

Alarms

OS-9 alarms provide a method of sending yourself a signal that won't be received until some
time in the future. Alarms may be installed for a specific time/date, at a specific time difference from
"now", or repetitively every n clock ticks or seconds. With an alarm, you are requesting that some pre­
defined signal be sent to your proc_ess later. The main C calls for signals are shown below. They all
need access to the <alarms . h> header file and all return an error_code .

_os_alarm_set (alarm_id *alrm_id, signal_code sigval, u_int32 time): request signal to be sent
when time clock ticks or, if appropriate, seconds have elapsed .

_os_alarm_cycle (): the same parameters as _os_alarm_set(), but the alarm is sent every time
clock ticks/ seconds. This function is often used to incorporate a watchdog timer.

_os_alarm_atdate (alarm_id *alrm_id, signal_code signal, u_int32 time, u_int32 date): send
signal at the requested time and (if non-zero) date.

_os_alarm_delete (alarm_id alrm_id): remove the specified alarm before it is sent.

Section : OS-9 Ove.rview

/

57

\
/)

Semaphores

Semaphores are flags that may either be up or down; true or false; 1 or 0, etc. (I prefer to think of
the semaphore states as free or used.) They are a basic tool used to synchronize shared resources that
may only be used by one process at a time. When a process needs access to a resource, it will wait for
the semaphore to be free, and once ~e semaphore is free, the waiting process returns from waiting and
the semaphore is then marked as used. Thus, only one process at a time may own the semaphore . When
the process that does own it completes using the resource, it must return the semaphore (mark it as free)
so the next waiting process may take it.

Semaphores on OS-9 use very little overhead on the part of the system. So little, in fact, that the
process that creates the semaphore must allocate memory for it! Since semaphores are generally used
by multiple processes , the general place to place a semaphore is inside a data module. Doing this
allows other processes to easily find the semaphore based on a pre-defined data module name and an
offset into the data module for where the semaphore begins . To access a semaphore, a process must
know the physical address of the space allocated for it; if a process knows the proper offset into a data
module, that value can be added to the address of the module header, which is returned from _os_link().

Section: OS-9 Overview

)

58

))

''C'' Semaphore Calls

All of these calls require to <semaphore. h> header file.

Every process using a semaphore must make a call to initialize it, _os_sema_init(). This func­
tion is passed the semaphore pointer which points to the semaphore of interest.

To compete for a semaphore , a process calls _os_sema_p() with the semaphore pointer as a
parameter. This function will cause the calling process to wait until the semaphore is free before con­
tinuing.

When a process wishes to release the semaphore, it calls _os_sema_ v() with its pointer. Note,
that a process is not required to own the semaphore (through a previous p call) to release (v) it. This can
provide some interesting, though esoteric situations.

When a process is through using a semaphore, it should call _os_sema_term() with the sema­
phore pointer.

Section: OS-9 Overview 59

))

Events

Events are a step higher than semaphores. When waiting for a semaphore, a process is waiting
for one of two possible states to occur. Events are represented by a signed 32 bit value, so there are
many more than two possible states! When waiting, a process chooses a range within the 32 bit realm
which will satisfy the waiting proc~ss. The resources controlled by events age generally much more
complex than those controlled by semaphores.

Before an event can be used, it must be created. The system will allocate the space for the event,
but a process must make a call to _os_ev _creat (int32 wine, int32 sine, u_int32 perm, event_id *ev _id,
char *name, int32 value, u_int32 color) which builds an event with the given name, and assigns it an
initial value. (OS-9 ignores the penn and color entries; these are used only by OS-9000.)

Basically, processes either wait for an event to occur or signal the fact that an event has occurred.
While a process waits for an event to occur, it is waiting for the event value to come inside some
wanted range. Once this has occurred, the waiting process win wake up and the event wait increment
(wine) will be added to the event, allowing the value to immediately change. When a process signals
the fact that an event has occurred, it causes the event signal increment (sine) to be added to the event
value. Each of these increments are signed values, thus the event value may rise or fall

Section: 0S-9 Overview 60

})

''C" Event Calls

Make sure all of these calls get the <events. h> and <types. h> header files included with
them. They all return an error_code .

_os_ev_link (char *name, event_id *ev_id): link to the event based on its name. This is not nec­
essary if you have done an _os_ev _creat() successfully .

_os9_ev_wait (event_id ev_id, int32 *value, int32 minval, int32 maxval): wait for the value of
the event to be within the range defined by minval and maxval. The integer pointed to by the second
parameter returns with the value of the event causing the process to wake.

_os_ev _signal (event_id ev _id, int32 *value, u_int32 actv _flag): cause the signal increment to
be added to the event flag and then, if appropriate, wake up the first waiting process for the new value
and if so, apply wait increment. Then, if actv _flag is non-zero, look for more processes to wake.

_os_ev_unlink (event_id): decrement the link count on the event. Use this call when you are
through with the event.

Section : OS-9 Overview

)

6 1

_os9_ev_waitr(): the same parameters as _os9_ev_wait(), but the min and max values treat the
current event value relative to zero. The returned integer is massaged to be relative to zero as well.

_os_ev _set (event_id, int32 *value, u_int32 actv _flag): change the event value to a specific
value and wake up process(es) according to the same rules as for _os_ev_signal().

_os_ev _setr(): same parameters as for _os_ev _set(), but the value is added to the event value.
Under OS-9, the value pointer will tome back pointing to the value of the event before the call; under
OS.:.9000 it will come back with the value of the event after the call.

_os_ev_read (event_id ev_id, int32 *value): determine the event value.

_os_ev _pulse (event_id ev _id, int32 *value, u_int32 actv _flag): similar to _os_ev _set(), but
when all processes to wake up are awakened, this call restores the event value to its value prior to the
pulse request.

_os_ev_delete (char .*name): remove the event from the system event table if the event's link
count is zero.

Section: OS-9 Overview

)

62

\
}

"C'' Event Calls for Non-68K Versions of OS-9

_os_ev_setand(event_id ev_id, int32 *value, u_int32 mask, u_int32 actv_flag): logically ANDs
the mask with the event value .

_os_ev _setor (): logically ORs the mask with the event value.

_os_ev _setxor(): logically XO Rs the mask with the event value.

_os_ev_tstset (event_id ev_id, int32 *value, signal_code *signal, u_int32 mask): logically
ANDs the mask with the event value and blocks the calling process until all bits specified in the mask
are cleared.

_os_ev _ wait(event_id, ev _id, int32 *value, signal_code ~signal, int32 min_ val, int32 max_ val):
same as _os9 _ev _ wait(), except if awakened by a signal, the signal code is returned.

_os_ev _ waitr(): the same parameters as _os_ev _ wait(), but the min and max values treat the cur­
rent event value relative to zero. The returned integer is massaged to be relative to zero as well.

Section: OS-9 Overview

\
/

63

1/0 System Overview

05-9 manages both the physical assignment of memory to programs and the
logical contents of memory by using memory modules . A memory module is a
logical, self-contained program, program segment , or collection of data .

05-9 supports ten pre-defined types of modules and allows users to define
their own module types. Each module type has a different function . Modules
do not have to be complete programs . Modules simpl y have to be re-entrant ,
position-independent , and conform to the basic module structure described in
the next section .

The 68000 instruction set supports a programming style called re-entrant code.
Re-entrant code is code that does not modify itself . This allows two or more
different processes to share one copy of a module simultaneously . The
processes do not affect each other , provided that each process has an
independent area for its variables . Almost all 05-9 family software is
re-entrant , and therefore uses memory efficiently .

NOTE : Data modules are an exception to the no modification restriction .
However , careful coordination is required for several processes to update a
shared data module simultaneously .

A position-independent module does not know or care where it is loaded in
memory . This allows OS-9 to load the program wherever memory space is
available. In many operating systems, the user must specify a load address to
place the program in memory . OS-9 determines an appropriate load address
only when the program is run .

05-9 compilers and interpreters automatically generate position-independent
code . In assembly language programming , howe ve r, you must ensure
position-independence by avoiding absolute addres s modes .

OS-9 Training end Education

MODULES

Position
Independent

Re-Entrant

110-1

1/0 System Overview BHIC Modu,. Structure

Each module has three parts: a module lieader, a module body, and a CRC Basic Module
(Cyclic Redundancy Check) value. Structure

MODULE HEADER

MODULE BODY
(PROGRAM/CONSTANTS)

CRCVALUE

The module header contains information (such as
the module's name , size, type, language , etc.) that
describes the module and its use. The linker
creates the header at link-time.

The module body contains initialization data ,
program instructions , constant tables, etc.

The last three bytes of the module hold a CRC
(Cyclic Redundan cy Check) value used to verify
the module's integrity . The linker creates the
CRC at link-time .

Buie Memory Module Format

The CRC is an error checking method used frequently in data communications
and storage systems. The CRC is also a vital part of the ROM memory module
search technique. It provides an extremely high degree of confidence that
programs in memory are intact before execution and is an effective backup for
the error detection systems of disk drives, memory systems , etc.

In 05-9 , a 24-bit CRC value is computed over the entire module starting at the
first byte of tl1e module header and ending at the byte just before the CRC.
05-9 family compilers and assemblers automatically generate the module
header and CRC values . If required , a user program can use the F$CRC system
call to compute a CRC value over any specified data-bytes.

05-9 cannot recognize a module with an incorrect CRC value. For this reas on,
you must update the CRC value of any module "patched " or mod ified in any
way , or the module cannot be loaded from disk or found in ROM. Use tl1e OS-9
fixmod utility to update the CR.C's of patched modules .

OS-9 Training and Education

TheCRC
Value

110-2

. -

'

.. _.

110 System Overview

When OS-9 starts after a system reset, the kernel searches for modules in ROM.
The kernel detects modules by looking for the module header sync code
($4AFC). When this byte -pattern is detected, Ute header parity is checked to
verify a correct header. If this test succeeds , the module size is obtained from
the header and a 24-bit CRC is computed over the entire module. If the
computed CRC is valid, the module is entered into the module directory .

05-9 links to all of its component modules that were found during the search.
All ROMed modules present in the system at startup are automatically
included in the system module directory. This allows partially or completely
ROM-based systems to be created. Any non-system module found in ROM is
also included. This allows user-supplied software to be located during the
start-up process and entered into the module directory .

The following are the standard fields in the module hea~er ..

Offset Name Usage

$00 M$10 Sync Bytes ($4AFC)
$02 M$SysRev Revision ID
$04 M$Slze Module Size
$08 M$0wner Owner ID
$0C M$Name Module Name Offset*
$10 M$Accs Access Permissions
$12 M$Type Module_'!'ype
$13 M$Lang Module Langua__ge
$14 M$Attr Attributes
$15 M$Revs Revision Level
$16 M$Edlt Edit Edition
$18 M$Usage Usage Comments Offset*
$1C M$Symbol Symbol Table
$20 Reserved
$2E M$Parity Header Parity Check
$30-up Module Type Dependent

Module Body

CRC Check

* These fields are offset to strings

OS-9 Training and Education

Memory MOcluln

ROMed
Memory
Modules

Module
Header

Information

1/0-3

1/0 System Overview Memory Modules

!**
* Program: compcrc.c *
*
* Purpose: This program demonstrates how to compute the CRC value
* for an OS-9 module.
*
* Update : 10/06/89 RRR
* 12/15/90 mja
* 01/03/91 mja
*

Usage: compcrc

Created
Slightly Modified
Modified Again

*
*
* Note: Compile with -DLIBCRC to use the library CRC function.

*
*
*
*
*
*
*
*
*
*
*

***/
@_sysedit:equ 10
#include <errno .h>
#include <module.h>
#define ERROR (-1)
main()
(extern char *modlink():

char *p_mod:

}

char mod_name[20]:
long mod_crc,comp_crc:

I* -- Get a pointer to the module name.*/
printf("Please input module name: "):
gets(mod_name);

I* -- Try to link to the named module.*/
if((p_mod-modlink(mod_name,mktypelang(HT_ANY,HL_ANY)))-(char*)(ERROR))
exit (_errmsg !errno. "Unable to link to module [Ss].\n", mod_name)):

I* -- Get the resident and computed module CRCs. */
get_crcs(p_mod. &mod_crc. &comp_crc);

I* -- Report the results.*/
printf ("The CRC stored in [Ss] is S08x.\n". mod_name. mod_crc):
printf (" The CRC computed for [Is] is SOBx.\n", mod_name. comp_crc):

I* -- Unlink the module and exit.*/
if (munlink (p_mod) - ERROR)

exit (_errmsg (errno. "Error unlinking modu 1 e. \n")):

get_crcs (modptr, modcrc. newcrc)
char *modptr;
long *modcrc, *newcrc:
{ long ace um:

long mod_size:

OS-9 Training and Education

CRC
Example

Code

l/0-4

110 System Overview

I* -- Get module size and initialize the CRC accumulator.*/
mod_size - ((mod_exec *)modptr)->_mh._msize;
accum - -1:

I* -- Compute the new CRC for the module.*/
calc_crc (modptr. mod_size - 4 . &accum):

#ifdef LIBCRC
ere (NULL. o. &accum):

#else
calc_crc ("". 1. &accum):

#endif

)

accum • -accum & OxFFFFFF:
*newcrc • accum:

I* -- Get the old CRC from the module header . */
*modcrc - *((long *)((char *)modptr + mod_size - 4)) & Oxffffff:

calc_crc(ptr.n.crcacc)
unsigned short *ptr;
long n:
unsigned long *crcacc:
(register unsigned long tmp.tmpl.accum - *crcacc & OxOOffffff:

register short tmp2:

if(n & 1) {
/* special case for one zero byte*/

if(n - 1 && *(char*)ptr - •\o·> {
tmpl - tmp - Caecum>> 16) & OxOOOOffff:

, accum <~- 8:
·tmp «- 1:
Jaccum "• tmp:
J tmpl "• tmp;
•tmp <<- 5: \
) ace um "• tmp:

/ tmp2· - tmpl:
tmp2 «- 2:

lt mpl "• tmpZ-i­
, tmp2 - tmpl;

J tmpl «- 4:
" tmp2 "- tmpl;

if(tmp2 & Ox80) accum "· Ox800021:
accum &- OxOOffffff:
*crcacc - accum;
return (0);

) e 1 se exit (_errmsg (1. "odd count for ere")):

Memory Modules

) else n >>- l; /* convert byte to word count*/

OS-9 Training and Education 1/0-5

1/0 Sy11tem Overview Memory Modules

while(n-- > 0) {
#ifdef VAX

#else

tmp - *(unsigned char*)ptr:
tmp - (tmp << 8) I *(((unsigned char*)ptr)+l):
++ptr:

tmp - *ptr++: /* get (next) data word*/
#endif /4

tmp «- 8:
tmp 11

- accum:
/* align data bit zero with CRC bit O */
/* get new data-CRC difference *I

}

)

/* clear extraneous bits*/ tmp &- OxffffffOO:
accum «- 16;
tmp »- 2:

/* shift current CRC: strip all but 23:16 */
/*shift*/

accum 11
- tmp; /* add input bit 17 net effect (over 16 shifts)*/

tmp »- 5:
accum 11

- tmp: /* add input bit 22 net effect*/

tmp2 - tmp: /* determine if even or odd number of bits*/
tmp »- 1: tmp2 "- tmp: tmp - tmp2:
tmp «- 2: tmp2 "- tmp: tmp - tmp2:
tmp «- 4; tmp2 11-= tmp: tmp - tmp2;
tmp «- 8: tmp2 11

- tmp:
1f(tmp2 & Ox8000) accum "- Ox800021;
accum &- OxOOffffff: I* clear extraneous bits*/

*crcacc - accum:

OS-9 Training and Education 1/0-6

1/0 system Overview

OS-9 is a highly modular operating system. It is designed so that each module
provides specific functions. OS-9's modularity allows individual modules to
be included or deleted in the system when 05-9 is configured for a specific
computer.

05-9 has four levels of modularity:

<D The Kernel, the Clock, and the lnlt Module
The kernel provides basic system services. These include Input/
Output (I/O) management, process control, and resource manage­
ment. The clock module is a software handler for the specific real­
time clock hardware . The Init module is an initialization table used
by U1e kernel during system startup.

~ FIie Managers
File managers process I/O requests for similar classes of I/O
devices. File managers are hardware independent.

<3> Device Drivers
Device drivers handle the basic physical 1/0 functions for specific
I/O devices. Standard OS-9 systems are typically supplied with a
disk driver, serial port drivers for terminals and serial printers, and
a driver for parallel printers. Many users add customized drivers of
their own design or purchase drivers from a hardware vendor.
Device drivers are hardware dependent.

@ Device Descriptors
Device descriptors are small tables that associate specific I/O ports
with their logical name, device driver, and file manager. These
modules also contain the physical address of the port and
initialization data. By use of device descriptors, only one copy of
each driver is required for each specific type of I/ 0 device regardless
of how many devices the system uses.

OS-9 Training snd Education

IMmory Modules

Levels
of

Modularity

110- 7

0~9MODULEORGANIZATION

Clock
Driver

Pipe
File

Manager:
PlPEMAN

Pipe
Driver
(Null)

Network
File

Manager
NFM

Network
. Driv er

Utilities and User Applications

OS-9KERNEL

I
Disk
File

Manager:

Floppy
Disk

Driver

RBF

I

Hard
Disk

Driver

Tape
File

Manager:
SBF

Tape
Driver

Math

CIO

User Trap
Handlers

I
Char
File

Manager:

Serial
Driver

SCF

l

Para llel
Driver

.----- ,--.__ ---_..._ _.___ _.__ -------_.__ ----'--- ----- --
nl ,· :n2 · ~dO. dl ' mtO mn term n p pl

- .____ - - - i..-..- L.--- "--- L-- L.....-- L--- L...--- ._____ -

Pipe
Descriptors

Network
Desc riptor s

OS-9 Training and Education

RBFDevice
Descriptors

SBFDevice
Descriptors

SCF Device
Descriptor s

V0-8

110 Sy11tem Overview

For a list of the specific modules that make up OS-9 for your system, use
the ident utility on the 0S9Boot file.

Although all modules could be resident in ROM, the system bootstrap
module is usually the only ROMed module in disk-based systems. All
other modules are loaded into RAM during system startup.

The OS-9 kernel does not process I/0 requests directly. Instead, the kernel
passes 1/0 requests to the appropriate file managers. Microware includes the
following file managers in the standard professional distribution:

RBF The Random Block File Manager handles 1/0 for random-access,
block-structured devices, such as floppy /hard disk drives.

SCF The Sequential Character File Manager handles 1/0 for sequen­
tially character-structured devices, such as terminals, printers,
and modems.

SBF The Sequential Block File Manager handles 1/0 for sequentially
block-structured devices, such as tape drives.

PIPEMAN The Pipe File Manager handles 1/0 for interprocess communica­
tions through memory buffers called pipes.

Microware also supports the following file managers which are not included in
-✓ the standard professional distribution:

PCF The PC File Manager handles reading/writing PC-DOS disks.
PCF is sold separately.

NFM The Network Ftle Manager processes data requests over the OS-9
network. NFM is included in the OS-9 /NFM package .

ENPMAN The ENPlO Socket File Manager transfers requests to and from
CMC ENPlO boards. ENPMAN is included in OS-9 /ESP, the
Ethernet Support Package.

$OCKMAN The Socket File Manager creates and manages the interface to
communication protocols (sockets) . SOCKMAN is included in
OS-9 /ISP, Ute Internet Support Package.

IFMAN

PKMAN

The Communications Interface File Manager manages network
interfaces. lFMAN is included in OS-9 /ISP, the Internet Support
Package.

The Pseudo -Keyboard File Manager provides an interface to the
driver side of SCF to enable the software to emulate a terminal.
PKMAN is included in the OS-9 /ESP and OS-9 /ISP Packages .

OS-9 Training and Education

110 Overview

//0 Overview

1/0-9

-

l/0 Sy•tem Overview

You make a request for
data/ status.

The kernel identifies and
validates the 1/0 request
and identifies the
appropriate file manager,
device driver, and other
necessary resources.
Then, the kernel passes the
request to the appropriate
file manager .

The file manager validates
the request and perfonns
device-independent
processing. lt calls the
device driver for
hardware interaction, as
needed .

The device driver perfonns
device-specific processing
and usually transfers the
data /s tatus back to the file
manager.

OS-9 KERNEL

FIie Managers

Device Drivers

Device Descriptors

You receive the
data/ status.

The kernel works with
the file manager to
return the data / status to
you.

The file manager monitors
and processes the
data / status and makes
requests to the kernel for
dynamic memory
allocation , as needed.

The black boxes contain non-executable code. These modul es are not "called," but
are referenced. TI,e descriptors are directly referenced by the kernel, file managers,
and drivers. The lnit modul e is directl y referenced only by the kernel.

OS-9 Training snd Education

VO Overview

V0-10

The /nit Module

The In.it module is sometimes referred to as the configuration module. It is a
non-executable module located in memory in the 0S9Boot file or in ROM. The
In.it module contains system parameters used to configure OS-9 during startup .
The parameters set up the initial table sizes and system device names. For
example, the amount of memory to be allocated for internal tables, the name of
the first program to be run (usually either SysGo or shell) , an initial directory ,
etc. are specified. The system limits defined in the Init module may be
examined at any time.

NOTE: The In.it module MUSf be present in the system in order for OS-9 to
work.

The values in the Init module's table are the system defaults. These defaults
can be changed in two ways:

• Modify the Init module with the moded utility.

• Edit the CONFIG macro in the systype.d file. The systype.d file is
located in the DEFS directory. After systype.d is edited, the In.it
module is remade and placed in the new bootfile .

Both methods are discussed later in this section. Regardless of the method
used, the changes made become the system defaults .

OS-9 Training and Education lnlt- 1

._/

Th• /nit Modu,.

The following is a list of the system defaults located in the Init module . Offset
refers to the location of a module field, relative to the starting address of the
module. Module offsets are resolved in assembly code by using the names
shown here and linking the module with the relocatable library : sys.I or usr.l.

Offset Name

$30
$34
$36
$38
$3A
$3C
$3E
$40
$42
$44
$46
$48
$4A
$4C
$50
$52
$56
$5A
$5C
$SE
$60
$62
$66
$68

$69
$6A
$6C
$6E

Reserved
M$Po11Sz
M$DevCnt
M$Procs
M$Paths
M$SParam
M$SysGo
M$SysDev
M$Consol
M$Extens
M$Clock
M$Sllce
Reserved
M$Site
M$1nstal
M$CPUTyp
M$0S9Lvl
M$0S9Rev
M$SysPri
M$MinPty
M$MaxAg&
Reserved
M$Events
M$Compat

M$Compat2
M$Memllst
M$1RQStk
M$ColcfTrys

0S-9 Training and Education

Description

Currently reserved for future use
Number of IRQ polling table entries
Device table size
Initial process table size
Initial path table size
Parameter string for startup module
Offset to name string of first executable module
Offset to the initial default directory name string
Offset to the initial 1/ 0 pathlist string
Offset to a name string of customization modules
Offset to the clock module name string
Number of clock ticks per time-slice
Currently reserved for future use
Offset to the installation site code
Offset to the installation name string
CPU type
Level, version, and edition number
Offset to the OS-9 level / revision string
Initial system priority
Initial system minimum executable priority
Initial system maximum natural age
Currently reserved for futu .re use
Initial number of entries allowed in the events table
Compatibility flag one - Byte is used for revision
compatibility
Compatibility flag two
Offset to the memory segment list
Size of the kernel 's IRQ stack
Retry counter if the kernel 's initial chd fails

lnlt - 2

..__,;

Th• lnlf ModuJ. S•Hlng Up the Sy•tem DefauHs: the lnlf Module

Name
M$Po11Sz

M$DevCnt

Description

Number of entries in the IRQ polling table . One entry is
required for each interrupt-generating device . The IRQ
polling table has 32 entries by default. Each entry in the IRQ
polling table is 18 bytes long.

Number of entries in the system device table . One entry is
required for each device in the system . The system device
table has 32 entries by default . Each entry in this table is 18
bytes long.

M$Procs Initial number of active processes allowed in the system . If
this table becomes full, it automatically expands as needed .
By default, 64 active processes are allowed . Each entry in the
initial process table requires 4 bytes .

M$Paths Initial number of open paths in the system . If this table
becomes full , it automatically expands as needed . By default ,
64 open paths are allowed . Each entry in the initial path table
requires 4 bytes .

M$SParam Offset to the parameter string (if any) passed to the first
executable module. An offset of O indicates that no parameter
string is required . The parameter string itself is located
elsewhere , usually near the end of the Init module .

M$SysGo Offset to the name string of the first ·executable module ;
usually SysGo or shell .

M$SysDev Offset t~ the initial default directory name string ; usually /dO
or /hO. The kernel does a chd and chx to this device prior to
forking the initial device . If the system does not use disks, this
offset must be zero.

M$Consol Offset to the initial 1/ 0 pathlist string . This offset us4ally
points to the /TERM string . This pathlist is opened as the
standard 1/ 0 path for the initial process. It is generally used
to set up the initial 1/ 0 paths to and from a terminal. This
offset should contain zero if no console device is in use.

OS-9 Training and Educalfon lnll-3

___,,

The /nit Module Setting Up the System Defaults: the lnlt Module

Name

M$Extens

M$Clock

M$Slice

M$Slte

M$1nstal

M$CPUTyp

Description

Offset to a name string of a list of customization modules (if any).
A customization module can be used to complement or change
OS-9's existing standard system calls. These modules are
searched for during startup and are typically found in the
bootfile . They are executed in system state if found . Modules
listed in the name string are separated by spaces. The default
name string to be searched for is 0S9P2 . If there are no
customization modules, set this value to zero .

NOTE: A customization module may only alter the dO, d1 , and
ccr registers .

Offset to the dock module name string . If there is no clock
module name string, set this value to zero.

Number of clock ticks per time-slice . The number of clock ticks
per time-slice defaults to 2.

Offset to the installation site code. This value is usually set to
zero. OS-9 does not currently use this field .

Offset to the installation name string .

CPU type : 68000, 68008, 68010, 68020, 68030, or 68070.
default is 68000.

The

M$0S9Lvl This four byte field is divided into three parts :

M$0S9Rev

M$SysPri

M$MlnPty

M$MaxAge

M$Events

level : 1 byte version: 2 bytes edition: 1 byte

For e~ple , level 1, version 2.3, edition 1 would be 1231.

Offset to the OS-9 level / revision string .

System priority at which the first module (usually SysGo or shell)
is executed. This is generally the base priority at which all
processes start . The default is 128.

Initial system minimum executable priority . The default is 0.

Initial system maximum natural age . The default is 0.

Initial number of entries allowed in U1e events table . If the table
becomes full , it automatically expands as needed . The default is
0. Each entry in U1e events table requires 32 by tes. This value is
no longer used .

OS-9 Training and Education /nit - 4

Th• /nit Module Setting Up the System Defaults: the lnlt Module

Name Description

M$Compat Revision compatibility. The default is 0. If set, the following
bits are currently defined:

Bit 0: Saves all registers for IRQ routines

Bit 1 : Prevents the kernel from using stop instructions

Bit 2: Ignores the "sticky'' bit in module headers

Bit 3: Disables cache burst operation (68030 systems)

Bit 4: Patternizes memory when memory is allocated or
deallocated

Bit 5: Prevents kernel cold-start from starting system clock .

M$Compat2 Indicates the "absence/snoopiness" of the system caches

Bit# Function

0

1

2

3

7

0
1

0
1
0
1

0
1
0
1

External instruction cache is not snoopy""
External instruction cache is snoopy or
absent

External data cache is not snoopy
External data cache is snoopy or absent
On-chip instruction cache is not snoopy
On-chip instruction cache is snoopy or
absent
On-chip data cache is not snoopy
On-chip data cache is snoopy or absent
Kenlel disables data caches when in 1/0
Kernel does not disable data caches
wheninl/O

"'.snoopy = cache that maintains its integrity without
software intervention.

M$Memllst Offset to the memory segment list. The colored memory list
contains an entry for each type of memory in the system. The
list is terminated by a long word of zero. H this field contains
a 0, colored memory is not used in this system.

M$1RQStk Size (in longwords) of Ule kernel's IRQ stack. The value must
be 0 or between 256 and $ffff. H the value is zero, the kernel
uses a small default IRQ stack. A larger IRQ stack is
recommended . The default value is 256 longwords.

M$ColdTrys Retry counter if the kernel 's initial chd to the system device
fails. The default value is 0.

OS-9 Training and Educot#on lnlt-5

The /nit Module Setting Up the System Defaulfl: the lnlt Module

The following is a portion of the distributed init.a file:

..... - _INITHOD equ 1 flag reading init module
CPUTyp set 68000 cpu type (68008/68000/68010)
Level set 1 OS-9 Level One
Vers set 2 Version 2.4
Revis set 4
Edit set 1 Edition
IP _IO set 0 interprocessor identification code
Site set 0 installation site code
HD1rSz set 128 initial module directory size (unused)
PollSz set 32 IRO polling table size (fixed)
DevCnt set 32 device table size (fixed)
Procs set 64 initial process table size (divisible by 64)
Paths set 64 initial path table size (divisible by 64)
Slice set 2 ticks per time slice
SysPri set 128 initial system priority

For more information on the Init module, refer to the OS-9 Technical Manual.

OS-9 Training and Education lnlt - 6

-

The /nit Module

Changing System Modules
System modules have been configured to satisfy the needs of the majority
of users . However, you may want to change the existing modules or create
new modules . New system modules and alterations to existing system
modules are made by using the moded utility or changing the defaults in
the systype.d file . The system modules most commonly altered are the
device descriptors and the !nit module .

The moded utility is used to edit individual fields of certain types of OS-9
modules . You can use moded to change a disk-based lnit module and other
disk-based OS-9 Device Descriptor modules .

To use the moded utility , type moded, the name of the desired device
descriptor , and any options .

The moded: prompt shows that the editor's command mode has been
entered .

When moded is invoked , it attempts to read the /dd/SYS/moded .fields file.
Moded.fields contains module field information for each type of module to
be edited . Without this file, moded cannot function .

The provided moded.fields file comes with module descriptions for stan­
dard RBF, SBF, SCF, Pll'E, NE1WORK , UCM, and GFM module
descriptors. It also includes a description for the Init module .

To edit the current module , use thee command. If there is no current
module , the editor prompts for the module name to edit . The editor then
prints the name of a field, its current value, and prompt for a new value .

The following edit commands are available :

Command Description

?
??

A new value for the field
Re-display previous field
Leave edit mode
Print edit mode command s
Print description of the current field
Leav e current value unch anged

If the definition of any field is unfamiliar , use the ?? command to provide a
short description of the current field .

OS-9 Training and Education

Using the
Moded

Utility

/nit- 7

Th• lnlt Module Changing System Modules

Once all necessary changes are made to Ute module, exit edit mode by reaching
the end of the module or by typing a period (.). At this point , the changes made
to the module exist only in memory . To write the changes to the actual file, use
the w command . This also updates the module header parity and CRC.

NOTE: moded is mainly used for editing existing descriptors. It is somewhat
restrictive , and as a result, if you are building a device descriptor or changing
a field so it has more characters than the current field, you may not want to use
moded .

The second method of changing system modules requires editing the systype.d
file located in the DEFS directory . The systype .d file contains macros such as
TERM, DlskHO, etc . for each device descriptor and the lnit module . These
macros contain basic memory map information , exception vector methods (for
example, vectors in RAM or ROM) , 1/0 device controller memory addresses
and initialization data, etc . for each device descriptor and for the In.it module .

The systype.d file consists of five main sections that are used when installing
OS-9:

• Wt module CONFIG macro
• SCF Device Descriptor macros and definitions
• RBF Device Descriptor macros and definitions
• ROM configuration values
• Target system specific definitions

The CONFIG macro is used when creating Ute In.it module to determine six or
more system dependent variables:

MainFram A character string used by programs such as login to print a
banner identifying the system. You may modify this string .

SysStart A character string used by the OS-9 kernel to locate Ute initial
process for the system . This process is usually the SysGo
module. Two versions of SysGo are provided in the files,
SysGo.a for disk-based OS-9 and SysGo_nodisk.a for ROM­
based OS-9.

SysParam A character string passed to the initial process . This usunll y
consists of a single carriage return .

0S-9 Training and EducoHon

Edffing the
Systype.d

FIie

lnH- 8

The lnH Module Changing System Modules

SysDev A character string containing the name of the path to the
initial system disk. The kernel coldstart routine sets the initial
execution and data directories to this device prior to forking
the SysStart process. Set this label to zero for a ROM-based
system. For example, SysDev set 0.

ConsolNm A character string containing the name of the path to the
console terminal port. Messages to be printed during startup
appear here .

ClockNm A character string containing the name of the clock module.

Other system parameters may be set in this macro to override the default
values created by the init.a source file. This allows you to perform "system
tuning' ' without modifying the generic init.a file.

The following is a portion of an example systype.d file :.

CONFIG macro

endm
Slice set 2
i fdef _INITHOD

Compat set ZapHem patternize memory
endc

When editing the Init module, constants may use either values or labels .
CPUTyp set 68020 is an example of a constant that uses a value. These
constants may appear anywhere in the systype.d file. Compat set ZapMem
is an example of a constant that uses a label. These constants must appear
outside the CONFIG macro and must be conditionalized to be invoked only
when init.a is being assembled. If these values are placed inside the
CONFIG macro, the old defaults are used. If a constant that requires a label
is placed outside the macro and not conditionalized, illegal external
reference errors result when making other files. Use the _INITMOD label to
avoid these errors.

OS-9 Training and Education
lnH-9

Interprocess Communications

05-9 supports five forms of interprocess communication : signals , alarms ,
events , pipes, and data modules . Pipes transfer data among concurrent
processes. Data modules transfer or share data among concurrent processes.
Signals can be used to synchronize concurrent processes . Alarms send signals
or execute subroutines at specified times . Events can be used to synchronize
concurrent processes' access of shared resources .

An 05-9 pipe is a first-in first-out (FIFO) buffer which enables concurrently
executing processes to communicate data : the output of one process (the
writer) is read as input by a second process (the reader) . Communication
through pipes eliminates the need for an intermediate file to hold data .

For example , assume that Process A creates a pipe named /pipe/temp to write
--/ to and read from it. Process B opens the same pipe to read from it:

--

Process A
(WRITES)

Process A writes Hello_ There I into the pipe .

Process A
wrttes.

OS-9 Training and Education

Processes
A&B

(READS)

Flgur• 1

Figure 2

Pipes

IPC-1

/nterproceff Communication•

Process B reads six characters out of the pipe:

Proceas B
reads.

Process A reads the last six characters out of the pipe:

Process A
reads.

Flgur• 3

Flgur•4

The previous example illustrates two important characteristics of pipes:

• Any process may read data out of a pipe, even the process that wrote
the data. ·

• Data does not have to be read out of the pipe in the same size sections
in which it was written.

A pipe may contain up to 90 bytes , unless a different buffer size has been
declared. Typically, a pipe is used as a one-way data path between two
processes: one writing and one reading. The reader waits for the data to
become available and the writer waits for the buffer to empty:

Process A
writes .

Process B
reads.

Figure 5

However, any number of processes can access the same pipe simultaneously:
the pipe file manag er coordinates these processes. A process can even arrange
for a single pipe to have data sent to itself . This could be used to simp lify type
conversions by printing data into the pipe and reading it back using a different
format.

OS-9 Training and Education

Pipes

IPC-2

•

•

•

•
I

'---'

tnterprocen CommunlcaUon•

!*********************************** I !**************************************
* pipedemol.c * I* pipedemo2.c *
* * I * *
* This program creates a pipe and * I* This program opens the pipe that *
* writes some text to it. After * I* pipedemol.c created and reads some *
* pipedemo2 is given adequate time* I* of the text that is in the pipe. *
* to read some of the text. this * I * *
* program reads the rest of the * I * *
* text. * I * *
* Compile with: * I * Compile with: *
* cc pipedemot.c * I* cc pipedemo2.c *
* Execute with: * I* Execute with: *
* pipedemol & pipedemo2 * I* pipedemol & pipedemo2 *
**********~************************! I**************************************!

#include
#include

#define
#define
#define
#define
#define
#define
fdefine
#define

main(}
{

<modes.h>
<errno.h>

OWNER S_IWRITE S_IREAD
GRP OWNER
PUBLIC S_IOREAD S_IOWRITE
ALL OWNER I PUBLIC
NAME "/pipe/te111p"
ERR_HSG "Can't open Pipe"
ERROR (-1)

NO ERROR (0 }.

int op • x:
char msg[lO]:

/ * First try to create(} the pipe,*/
/* if it fails then some other */
/ * process has created it. */
/ *Therefore.all this process has*/
/* to do is open it. */
/* If the open() fails, then exit* /

I
!#include <modes.h>
!#include <errno.h>

I
j#define OWNER
I fdefi ne GRP
lfldefi ne PUBLIC
!#define ALL
j#define NAME
!#define ERR_HSG
!#define ERROR
j#define NOERROR

I
!main(}

I<
I int op. x:
I char msg[lO]:

I

S_IWRITE S_IREAD
OWNER
S_IOREAD I S_IOWRITE
OWNER I PUBLIC
"/pipe/temp"
"Can·t open Pipe"

(-1}

(0)

I /* First try to create(} the pipe,*/
I /* if it fails then some other */
I
I
I
I

/* with an error message. *I I

/* process has created it. */
/* Therefore. all this process has* /
/* to do is open it. */
/* If the open() fails, then exit */

/* with an error message. * /

I
if((op-create(NAHE,GRP,ALL})-ERROR}I if((op-create(NAME.GRP,ALL)}-=ERROR)

OS-9 Training and Education

Pip ..

IPC-3

}

lnterprocen Communications

ff((op-open(NAME.GRP))-ERROR)
exft(_errmsg(errno,ERR_MSG)):

/* Now write text into the pipe */
ff(wrtte(op."Hello Therel".12) 1•12)

exft(_errmsg(errno,"OOPS\n")):

/* sleep awhile waiting for */
/* pfpedemo2.c to read some text* /
sl eep(l):

/* Now read 6 remaining bytes */
x - read(op,msg,6);
msg[xJ - '\0':

if((op-open(NAME.GRP)) ERROR)
exit(_errmsg(errno,ERR_MSG)):

/* Sleep awhile waiting for */
/* pipedemol.c to write some text* /
s 1 eep (1);

/* Now read text into the pipe */

if((x-read (op,msg ,6)) 1- 6)
exft(_errmsg (errno ,"OOPS\n"));

msg[x] - '\O':

/* Print the results
_errmsg(NOERROR,"%s\ n",msg) :

I I Print the results
_errmsg(NOERROR."%s\n".msg);

*I

/* End of program
exit(O):

* I I * End of program
exit(O):

}

*I

OS-9 Training and Education

Pipes

IPC-4

lnterprocen Communications

Pipes are commonly used to send and receive data between two processes.
Two pipes are required in this situation because processes cannot determine
who wrote the data in a pipe :

READS

Proceaa A Proceaa B

Flgure6

Another common use of pipes involves two processes sending data to a third
process :

ProceaaA

Proceaac

Process B

Figure 7

Pipes can be used much like signals to coordinate processes , but with these
advantages :

• Longer messages (more than 16 bits)

• Queued messages

• Determination of pending messages

• Easy process-independent coordination (using named pipes)

Pipeman is the OS-9 file manager that supports interprocess communication
through pip es. Pipeman is a re-entrant subroutine package that is called for
1/ 0 service requests to a device named /pipe. Although no physical de vice is
used in pipe communications , a driver must be specified in the pipe descriptor
module . The null driver (a driver that does nothing) is usually used , but only
gets called by pipeman for GetStat / SetStat calls.

OS-9 Training and Education

Pipes

Pipeman

IPC-5

Interprocess Commun/catlon11

OS-9 supports both named and unnamed (anonymous) pipes. Unnamed pipes
are used extensively by the shell to construct program "pipelines," but may
also be used by user programs . Unnamed pipes may be opened only once.
Independent processes may communicate through an unnamed pipe only if
the pipeline was constructed by a parent (or grandparent , great-grandparent,
etc .) common to the processes . This is accomplished by making each process
inherit the pipe path as one of its standard 1/0 paths.

Named and unnamed pipes function nearly identically. The main difference is
that a named pipe may be opened by several independent processes, which
simplifies pipeline construction. Other specific differences are noted in the
following section .

The !$Create system call is used with the pipeman to create new named or
unnamed pipe files. Pipes may be created using the pathlist /pipe (for
unnamed pipes, "pipe" is the name of the pipe device descriptor) or
/pipe/<na me> (<name> is the logical file name being created) . If a pipe file with
the same name already exists , an error (E$CEF) is returned. Unnamed pipes
cannot return this error . ·

All processes connected to a particular pipe share the same physical path
descriptor. Consequ e:1Uy, the paU, is automatically set to "update" mode
regardless of the mode specified at creation . Access permissions may be
specified and are handled in the same manner as RBF' s access permissions.

The size of the default FIFO buff er associated with a pipe is specified in the pipe
device descriptor. When creating a pipe, you can override this default by
setting U,e initial file size bit of the mode byte and passing the desired "file
size" in register d2.

If no default or overriding size is specified, a 90-byte FIFO buffer inside the
path descriptor is used .

When accessing unnamed pipes, 1$0pen, like !$Create, opens a new
anonymous pipe file. When accessing named pipes, 1$0pen searches for the
specified name through a linked list of named pipes associated with a
particular pipe device. If the pipe is found, the path number returned refers to
the same physical path that was allocated when the pipe was crent ed .
Internally , Uus works similarly to the 1$0up system call.

Opening an unnamed pipe is simple , but sharing the pipe with another pro cess
is more complex. If a new path to /pipe is opened for the second process, the
new path would be independent of the old one .

OS-9 Training and Education

Pipes

Named and
Unnamed

Pipes

Operations
on Pipes:

Creating
Pipes

Opening
Pipes

/PC-6

lnterprocen Commun/cations

The main advantage of using named pipes is that several processes may
communicate through the same named pipe without having to inherit it from
a common parent process .

NOTE : The OS-9 shell always constructs its pipelines using the unnamed /pipe
descriptor .

The 1$Read and I$Readln system calls return the ne xt bytes in the pipe buffer .
If there is not enough data ready to satisfy U,e request , the process reading the
pipe is put to sleep until more data becomes available .

The end-of-file is recognized when the pipe is empty and the number of
processes waiting to read from the pipe is equal to the number of users of the
pipe . If any data was read before end-of-file was reached , an end-of-file error
is not returned . However, the byte count returned will be the number of bytes
actually transferred , which will be less than the number requested.

NOTE: The !$Read and !$Write system calls are faster than 1$Readln and
1$Writln because pipeman does not have to check for carriage returns and the
loops moving data are tighter .

The !$Write and I$WrltLn system calls work in almost the same way as !$Read
and I$Readln . A pipe error (E$Write) is returned when all the pro cesses who
have a full unnamed pipe open are attempting lo write to the pip e. The first
process attempting to write to the pipe receives the error and the pipe remains
full .

When named pipes are being used , pipeman never returns the E$Write error .
If a named pipe becomes full before a process that receives data from the pipe
has opened it , the process writing to the pipe is put to sleep until a process
reads the pipe .

When a pipe path is closed , its path count is decremented . If no paths are left
open on an W\I\amed pipe , its memory is returned to the system . With named
pipes , its memory is returned only if U,e pipe is empty . A non-empty pipe
(with no open paths) is artificiall y kept known to the system , waiting for
another process to open and read from U,e pipe. This permits pipes to be used
as a type of a temporary , self-destructing "RAM disk file ."

The 1$MakDir and 1$ChgDir service reque sts are illega l service routines on
pipes . They return E$UnkSvc (unkn own service request).

OS-9 Training and Education

Plp.s

Read&
ReadLn

Write &
WrffeLn

Close

/PC- 7

lnterproc•n Communlt:11tlon•

The following chart summarizes the behavior of named and unnamed pipes in
potential error situations:

Named Pipes Unnamed Pipes

Figure 8 : Named vs. Unnamed Pip••

Opening an unnamed pipe in the "dir" mode allows it to be opened for reading.
In this case, pipeman allocates a pipe buffer and pre-initializes it to contain the
names of all open named pipes on the specified device. Each name is null­
padded to make a 32-byte record. This allows utilities , that normally read an
RBF directory file sequentially, to work with pipes as well.

OS-9 Training and Education

Pipes

Pipe
Directories

IPC-8

lnterproc••• Communlcatlon11

Pipeman supports a wide range of status codes , to allow pipes to be inserted
between processes where an RBF or SCF device would normally be used . For
this reason , most RBF and SCF status codes are implemented to do someU1ing
without returning an error . The actual function may differ slightly from the
other file managers, but it is usually compatible .

Status Code C Binding

SS_Opt

SS_Ready

SS_Slze

SS_EOF

SS_FD

Status Code

SS_Opt

SS_Size

SS_FD

SS_Attr

SS_SSig

SS_Relea

_gs_opt(path, buffer)
Reads the 128-byte option section of the path descriptor . It
can be used to obtain the path type, data buffer size and name
of pipe .

_gs_rdy(path)
Tests whether data is ready . It returns the number of bytes in
U1e buffer .
_gs_size(path)
Returns the size of the pipe buffer .
_gs_eof(path)
Tests for end-of-file .

_gs_gfd(path, buffer, count)
Returns a pseudo-file descriptor image.

CBlndlng

_ss_opt(path, buffer)
Does nothing , but returns without error .
_ ss _size(path, size)
Resets the pipe buffer if the specified size is zero . Otherwise,
it has no effect, but returns without error .
_ss_pfd(path , buffer)
Does nothing , but returns without error .
_ss_attr(path, attr)
Changes the pipe file's attributes.
_ ss _ ssig(path , sigcode)
Sends a signal when U1e data becomes available.
_ss_rel(path)
Releases the device from the SS _ SSig pro cessing before data
becomes available .

Other GetStat / SetStat codes are passed to the device driver .

NOTE: Remember that pipeman is not a tru e dire ctory device, so command s
like chd and makdir do not work with /pipe .

OS-9 Training and Education

Pipes

GetStat&
SetStat

GetStat
Status Codes

SetSfat
Status Codes

IPC-9

lnterprocen Communication•

Data Modules

OS-9 data modules enable multiple processes to share a data area and to
transfer data among themselves. A data module must have a valid CRC and
module header, and can be non-re-entrant. That is, a data module can modify
itself and be modified by several processes.

OS-9 does not have restrictions as to the content, organization, or usage of the
data area in a data module . These considerations are determined by the
processes using t4e data module.

OS-9 does not synchronize processes using a data module. Consequently,
thoughtful programming, usually involving events or signals, is required to
enable several processes to update a shared data module simultaneously.

Two data structures must be considered when referring to data modules : the
structure that defines the module itself and the user-defined structure that the
data module contains . The user-defined structure is simply a C language stru c­
ture. For example, Figure 9 illustrates the data module used in the program
described later in this section :

modptr ~

Module Header
•Header sizes v~tween operating
system vers ions. 9 version 23 uses

52 bytes.
;
~

dataptr __..

flagl flag2 I flag3

ftrltvol

1econdval

I
message

I i

CRC (4 bytes) ;
,. _, ,,,. .~'I',_.,.,..,. .. ,..,. N, ,v w i

Figure 9: Example Data Module

OS-9 Training and Education /PC- 10

.
\

NOTE: The _mkdata_module() C call returns a pointer to the beginning of the
module header, not to the data section.

The F$DatMod system call creates a data module with a specified data area
size, module name, and set of attributes. The dala area is cleared automatically.
The data module is created with a valid CRC and entered into the system
module directory .

NOTE: It is essential that the data module's header and name string not be
modified to prevent the module from becoming unknown to the system.

The Microware C compiler supports several C calls to create and use data
modules directly:

-.:_ mkdata_ module(name,size ,attr ,perm)
'l Creates a data module with the specified name, size, attributes and

permissions.

make_module(name,slze,attr ,perm, typelang, color)
Creates a memory module with the specified name and attributes in the
specified memory .

modcload(modname, mode , memtype)
-. Searches the module directory for a module with the same name as that

pointed to by modname and links to it.

modlink(modname ,typelang)
Searches the module directory for U1e specified module and links to the
module if the type and language match typelang .

modload(modname ,accessmode)
Searches the module directory for the specified module, loads the
module , and links to the module .

modloadp(modname,mode , name)
Loads and links a module . It uses the PATI-I environment variable to
determine alternate directories to search for the named module .

mun link(module)
Informs the system that the specified module is no longer required by
the process . (The parameter module is a pointer to a module .)

munload(name,type)
Informs the system that the specified module is no lon ger required by
the process . (The parameter name is a pointer to the name of a modu le.)

OS-9 Training and Education

Data Module•

Creating
Data Modules

IPC-11

lnterprocea Communlcatlom,

The _mkdata_module() function is specific to data modules , while the
modlink(), modload(), munlink(), and munload() functions apply to all 05-9
modules . For more information on these calls , refer to the standard library
sections of the OS-9 C Compiler User's Manual .

Like all 05-9 modules, data modules have a link count associated with them .
The link count is a counter of how many processes are currently linked to a
module . Generally, a module is removed from memory when this count
becomes 0. However, a "sticky'' module is retained in memory until its link
count becomes -1 or memory is required for another use . A module is "sticky''
if the sixth bit of the module header's attribute byte is set.

If a data module is saved to disk, you can examine the module 's format and
contents with the dump utility. A data module can be saved to disk with the
save utility or by writing the module image into a file . If the data module was
modified since its creation, the saved module 's CRC will be bad and it will be
impossible to re-load the module into memory . To enable the module to be re­
loaded, use the F$SetCRC system call or _setcrc() C library call before writing
U,e module to disk. Or , use the fixmod utility after the module has been written
to disk.

OS-9 Training •nd Educ•tlon

D•ta Modules

Unk Count

Saving to
l>lsk

IPC- 12

lnterproceu Communlc11tlons

Any number of independent processes can access a data module by using
modlink() or modload() .The example program illustrates how a data module is
created and how individual elements of the module 's data structure can be
manipulated.

#include <stdio . h>
#include <module.h>
#include <errno .h>
#define ERROR -1
#define REVS OxOO
typedef struct datastr {

unsigned char flag!;
char flag2:
short fl ag3:
long firstval,
secondval :
char message(8]:
} dx:

mai n()
{

char* _mkdata_module() .
* modlink(),

*modptr:
dx * dataptr;

Note that dataptr is d~clared as a pointer to an object of type dx, a previously
defined data type . This could be any data structure that the user wishes to be
internal to the data module .

char* strcpy().
*modnam:

unsigned modsize:
short attributes,

permiss i ons:

modnam - "demodule";
modsize - sizeof(dx):

permissions - HP_OWNER_READ I HP_OWNER_WRITE;
attributes - (HA_REENT << 8) I REVS;

/ *or*/
/ * attribute s - ((HA_REENT I HA_GHOST) << 8) I REVS; */

The following section actually makes the data modul e. The modptr param eter
will contain the starting address of the module or-1 , if an error occurred .

if ((modptr - _mkdata_module(modnam,modsiz e ,attri bute s permi ssions))
. =-(c har *)ERROR)

exit(_errmsg (errno,"Unable t o Create Data HoduleH));
else

printf("Starting Address of Module I s• %x\ n".modnam,modptr) ;

OS-9 Training and Education

Data Modules

Data Modules:
Example
Program

/PC- 13

lnterprocen Communications

The following line calculates a pointer to the data portion of the module by
adding the execution offset (an offset to the data) to the pointer to the beginning
of the module header. Refer to Figure 9 for an illustration of these locations.

dataptr - (dx *)(modptr + ((mod_exec *)modptr)->_mexec);

The following section puts string data into the module:

printf(·sc Sc \n",dataptr->flagl, dataptr->flag2);
dataptr·>flagl - 'R' ;
dataptr·>flag2 - dataptr·>flagl;
dataptr->flag3 - Oxfeed;
dataptr·>firstval - Oxabcdl234:
dataptr·>secondval - dataptr·>firstval + 10;
strcpy(dataptr->message,"FOOBAR"):

When the process is finished with the data module, either munllnk() or
munload() should be executed to decrement the module's link count. This
section has been commented out of the example program to enable the user to
examine the module's contents.

NOTE: munlink() requires a pointer to the module, while munload() requires a
pointer to the module's name.

)

/* if (munlink(modptr) - ERROR)
exft(_errmsg(errno,"Couldn't unlink from data module")):*/

I* or *I
/* if (munload(•demodule".(HT_DATA << 8)) -= ERROR)

exit(_errmsg(errno,"Couldn't unload data module")):*/

OS-9 Training and Education

Data Modules

/PC- 14

..-

--

lnterproc•• Communication• Data Modules

The example program is listed in its entirety on the following pages. Data Modules:
Example
Program

/***
* Program: datmod. c * * Function: This program demonstrates how to use Data Modules.*
**/

#include <stdio.h>
#include <module.h>
#include <errno.h >

#define ERROR -1
#define REVS OxOO

typedef struct datastr {
unsigned char flagl:
char flag2:
short fl ag3:
long firstval .
secondval:
char message[8]:
) dx:

main()
{

char *_mkdata_module(),
*modlink().
*modptr:

dx * dataptr:
char* strcpy().
*modnam:

unsigned modsize:
short attributes.
permfssi ons:

modnam - .. demodule";
modsize - sizeof(dx):

I*

I*

/* This defines mod_exec and _mexec */
/* Allows the use of errno */

/* Errors are denoted by a -1. */
/* The revision number of created Data Module*/

/* The data elements that will be in the*/
/* data module are defined here.*/

/* the name of this typedef structure is dx */

I* declare this function to return (char *) *I

I* declare this variable to return (char *) *I

dataptr is a ptr to the defined structure dx *I

I* pointer to the module name. *I

/* size of the data area of data module. *I
/* the attributes given to the data module. *I
/* the permissions given ·this data module. *I

The name of the data module wi 11 be .. demodule" */
I* The size is that of the defined structure. *I

permissions• MP_OWNER_REAO I HP_OWNER_WRITE; /* owner can read & write* / attributes - (HA_REENT << 8) I REVS: /* The Attribute/Revision definition*/ I* or*/
/* attributes - ((HA_REENT I HA_GHOST) << 8) I REVS; /* for sticky module* /

OS-9 Training and Education IPC-15

)

lnterproceu Communications Dsts Modules

/* Create the Date Module */
/* Note: _mkdata_module() will create */
/*anew data module even if there's one*/
/* already in memory by the same name */
/* and its Link Count - 0 */

if ((modptr-_mkdata_module(modnam.modsize.attributes permissions))-(char *)ERROR)

)

/* if error. print error message*/
Create Data Module")): exit(_errmsg(errno;•unable to

else /* else print some information*/
Module %s - %x\n",modnam,modptr) : printfc·starting Address of

I* Figure dataptr from modptr */
dataptr • (dx *)(modptr + ((mod_exec *)modptr)->_mexec):

/* Now, use the data module elements as if they*/
I* were elements of any other structure .* /

printfc•ic Sc \n" ,dataptr- >flagl. dataptr->flag2) :
dataptr->flagl - 'R':
dataptr->flag2 - dataptr->flagl:
dataptr->flag3 - Oxfeed:
dataptr->firstval • Oxabcdl234:
dataptr->secondval - dataptr->firstval + 10:
strcpy(dataptr->message,"FOOBAR"):

/* Don' t f~rget to unlink from the*/
/* Data Module when finished using it. */

/* munlink () requires the module pointer* /
/* if (munlink(modptr) - ERROR)

exft(_errmsg(errno . "Couldn't unlink from data module")):
/* HT_DATA is the type for data module*/

/* and is defined in module.h. */
I* or *I I* It must be left shifted 8 bits* /

/* munload() requires a name and a type*/
/* if (munload(•demodule" , (HT_DATA << 8)) - ERROR)

exit(_errmsg(errno."Couldn't unload data module")); */

OS-9 Training and Education IPC-16

lnterprocen Communications

In interprocess communications, a signal is an intentional disturbance in a
system. OS-9 signals are designed to synchronize concurrent processes, but
they can also be used to transfer small amounts of data. Because they are
usually processed immediately, signals provide real-time communication
between -processes.

Signals are also referred to as software interrupts because a process receives a
signal similarly to how a CPU receives an interrupt. Signals enable a process
to send a "numbered interrupt' ' to another process. If an active process
receives a signal, the intercept routine is executed immediately (if installed)
and the process resumes execution where it left off (See Figure 10).

Signal arrives.

------- .. --~t""'""'"'"""""'"""l~HIII>··-------~--►
Mainline code
executes.

Signal handling
routine executes.

Mainline code resumes
execution where it left off.

Figure 10: Signal arrives while process Is executing .

If a sleeping or waiting process receives a signal, the process is moved to the
active queue , the signal routine is executed, and the process resumes execution
right after the caµ tl)at removed it from the active queue (See Figure 11).

Signal arrives.

•------•►··· l1111m1111111111111•11mmnil1Hllll11""'•-----■-•►
Mainline code
executes.

Process sleep s Signal handlin g
or waits. routine execu tes.

Mainline code resumes
execution where it left off.

Figure 11: Signal arrives while process Is sleeping or waiting.

OS-9 Training and Education

Signals

IPC-17

lnterprocen Communlcatlon11

NOTE: A process which does not have an intercept routine will be killed if it
receives a signal. This applies to all signals greater than 1 (wake-up signal) .

Each signal has two parts: the process ID of the destination and a signal code .
The following signal codes are supported:

Signal

0

1

2

3

4

2-31

32-255

256-65535

Description

Unconditional system abort signal. The super-user can send
the ''kill" signal to any process, but non-super-users can send
this signal only to processes with their group and user IDs.
This signal terminates Lhe receiving process, regardless of U1e
state of its signal mask, and is not intercepted by the intercept
handler.

Wake-up signal. Sleeping / waiting processes which receive
this signal are awakened, but the signal is not intercepted by
the intercept handler . Active processes ignore this signal . A
program can receive a wake-up signal safely without an
intercept handler. The wake-up signal will not be queued if
the process' signals are masked.

Keyboard abort signal. When control-E is typed, this signal is
sent to the last process to do 1/0 on the terminal. Usually, the
intercept routine will perform exit(2) upon receiving a
keyboard abort signal .

Keyboard interrupt signal. When control-C is typed, this
signal is sent to the last process to do 1/0 on the terminal.
Usually, the intercept routine will perform exit(3) upon
receiving a keyboard interrupt signal.

Hang-up signal. This signal is sent by SCF when it discovers
that the modem connection has been lost.

This signal is deadly to serial and pipe 1/0 system calls.

These signal numbers are reserved for future use by
Microware.

User-defined signals. These signal numbers are available
for use in user applications.

A signal routine could be designed to interpret the signal code w0rd as dntn .
For example, various signa l codes could be sent to indicate different stag es in a
process ' execution . This is extremely effective becau se signals ar e pro ces~ed
immediately upon receipt.

OS-9 Training and Education

Signals

IPC-18

lnterproc••• Communications

The following system calls and C bindings enable processes to communicate
through signals:

System Call C Binding ---------
F$Send kill(pid, signal)

F$1cpt intercept(icpthand)

F$Sleep sleep(seconds)
tsleep(ticks)

F$SigMask sigmask(level)

Description

Sends a signal to a process.

Installs a signal intercept routine.

Deactivates the calling process
w,til the specified number of
seconds has passed or a signal is
received.

Enables/disables signals from
reaching the calling process.

For specific information about these system calls, refer to OS-9 System Calls
and the OS-9/68000 C Complier User's Library.

System Call C Binding ---------ss _ SSig _ss _ssig(path,sigcode)

SS_Relea _ss_rel(path)

OS-9 Training and Education

Description

Sends a signal when data is
available on the path.

Releases the device from a
previous SS _ SSig call.

Signals

Setstat

IPC-19

lnterprocen Communications

The following program demonstrates a subroutine that reads a \n terminated
string from a terminal with a 10 second time-out between the characters. This
program is designed to illustrate signal usage; it does not contain any error
checking.

The _ss_ssig(path, value) library call notifies the operating system to send the
calling process a signal with signal code value when data is available on path .
If data is already pending, a signal will be sent immediately. Otherwise,
control is returned to the calling program and the signal is sent when data
arrives.

#include <st dio.h >
#include <errno.h >

#define TRUE 1
#define FALSE 0

#define G0T_CHAR 2001
short dataready; /* flag to show that si gnal was received*/

/* si ghand - signal handling routine for this p~ocess */
sighand(signal)
register int signal;
(

switch(signal) (
/* "E or : c1 *I

__,,. case 2:
case 3:

-·

}
)

_err msg(0,"termination signal received\n");
exit(signal);

/* Signal we'r e looking for?*/
case G0T_CHAR:

dataready - TRUE;
break;

/* Anything else?* /
default:

_errmsg(0,"unknown signal received-> ld \ n",signal);
exit(!) ;

main()
(

char buffer[256];

intercept(sighand):

/* buffer for typed-in string*/

/*setup signa l handler*/

printf("Enter a string:\n"); /* prompt user* /

/* call timed _read. returns TRUE if no timeout. -1 if ti meout*/
if (ti med_r ead(buffer)-= TRUE)

printf("Entered string - ls\n",buffer):

OS-9 Training and Education

Signals

Signals:
Example
Program

/PC - 20

lnterproce1111 Communlc•tlon11

else
printf("\nType faster next timel\n"):

)
int timed _read(buffer)
register char *buffer;
(

char c - '\O': / * one character buffer for read*/
short timeout - FALSE: / * flag to note timeout on read* /
int pos - O; / * position holder in buffer*/
/* loop until <return> entered or timeout occurs*/
while ((c 1- '\n') && (timeout - FALSE)) (

sigmask(l); / * mask signals for signal setup* /
_ss_ssig(O,GOT_CHAR); /* setup to have signal sent*/
sleep(lO); /* sleep for 10 sec or until signal*/

/ * NOTE: It is necessary to mask signals before exe cuting _ss_ssig()

)

to ensure that the signal does not arrive between the time when the
_ss_ss1g() is executed and the process actually goes to sleep.*/

/* Now we're awake. determine
ff (ldataready)

what happened* /

timeout - TRUE;
else (

read(O,&c,1);
buffer[pos] - c;
pos++;
dataready - FALSE;

/ * read the ready byte*/
/ * put it in the buffer*/
/* move our position holder*/
/* mark data as read*/

)
)
/ * loop has terminated. figure out why* /
if (timeout)

return -1: /* there was a timeout so return -1 */
else l

}

buffer[pos] - '\O'; /* null terminate the string*/
return TRUE;

I* OS-9 2.2 needs the following section in line assembly.
This section is included in the OS-9 2.3 (or higher) library. */

Hasm
* C binding for
sigmask: move. l

sig mask(value)
dl,-(sp) save dl on the stack

move.1 dO,dl
clr.l dO
os9 F$SigHask
bcc.s ret
move.l fl - 1,d0
move.l dl,errno (a6)

ret move. l (sp)+,dl
rts

#endasm

OS-9 Training and Education

get the passed parameter in the right place
make dO"' 0
make the system call to mask signals
if no error ...
return -1 to user
fill errno with error number
restore dl fr om the sta ck
return to user

Slgn•I•

IPC-21

lnterproc•n Communtcatton11

OS-9 alarms enable programs to send signals or execute subroutines at
specified times or at specified intervals .

The user-state F$Alarm request allows a program to arrange for a signal to be
sent to itself . The signal may be sent at a specific time of day or after a specified
interval has passed . The program may also request that the signal be sent
periodically, each time the specified interval has passed .

The following user-state alarm functions are supported:

System Call C Binding --------------------
A$ De I et e alm_delete(alarmid)

Removes a pending alarm requ~st.

A$Set alm_set(slgcode, time)
Sends a signal after specified time interval.

A$Cycle alm_cycle(sigcode, timeinterval)
Sends a signal at specified time intervals .

A$AtDate alm_atdate(sigcode, time, date)
Sends a signal at Gregorian date / time .

A$AtJul alm_atjul(sigcode, time , date)
Sends a signal at Julian date / time .

A cyclic alarm is most useful for providing a time base within a program . This
greatly simplifies the synchronization of certain time-dependent tasks. For
example, a real-time game or simulation might allow 15 seconds for each move .
A cyclic alarm signal could be used to determine when to update the game
board .

The advantages of using cyclic alarm s are more apparent when multipl e time
bases are required . For example, suppose that an OS-9 process is being used to
update the real-time display of a car's digital dashboard . The process might
want to :

• update a digital dock display every second

• update the car's speed displa y five times per second

• update the oil temperature / pressur e display twice per seco nd

• update the inside / outside temperature every two seconds

• calculate miles to empty every five seconds

OS-9 Training snd Education

Alarms

User-State
Alarms

Cyclic
Alarms

IPC-22

--

lnterprocen communications

Each function the process must monitor could be given a cyclic alarm, whose
period is the desired refresh rate , and whose signal code identifies the
particular display function. The signal handling routine might read an
appropriate sensor and directly update the dashboard display . All of the
timing details would then be handled by the operating system.

An alarm may be set to provide a signal at a specific time and date . This
provides a convenient mechanism for implementing a "cron" type of utility ,
which executes programs at specific days and times. Another use would be to
generate a traditional alarm clock buzzer for personal reminders .

A key feature of this type of alarm is that it is sensitive to changes made to the
system time. For example, assume the current time is 4:00 and a program
wants to send itself a signal at 5:00. The program could either set an alarm to
occur at 5:00 or set the alarm to go off in one hour . Assume the system
administrator discovers that the system clock is 30 minutes slow and resets the
clock to the correct time . In the first case, the program would wake up at 5:00;
in the second case, tlte program would wake up at 5:30.

A relative alarm can be used to set a time limit for a specific action. Relative
time alarms are frequently used to cause an !$Read request to abort if it is not
satisfied within a maximum time . This can be accompn.shed by sending a
keyboard abort signal at the maximum allowable time , and then issuing the
1$Read request. If the alarm arrives before the input has been received , Ute
1$Read request returns with an error . Otherwise , the alarm should be
cancelled. The example program deton .c demonstrates this technique.

A system-state counterpart exists for each of the user-state alarm functions.
However , the system-state version is considerably more powerful titan its user­
state equivalent. When a user-state alarm expires, Ute kernel sends a signal to
the requesting process . When a system-state alarm expires, the kernel executes
the system-state subroutine specified by the requesting process at a very high
priority .

The following system-state alarm functions are supported :

System Call

A$Delete

A$Set

A$Cycle

Description

Removes a pending alarm request.
Executes a subroutine after a specified time inter va l.
Executes a subroutine at specified time intervals .

A$At0ate Executes a subroutine at a Gregorian date / time .
A$AtJul Executes a subroutine at Julian date / time .
Currently, there are no C bindings for the system state calls.

OS-9 Training snd Education

Alarms

Time of Doy
Alarms

Relative
Alarms

System-State
Alarms

IPC-23

lnterprocea Communication•

NOTE: The alarm is executed by the kernel 's process , not by the original
requester's process . During execution, the user number of the system process
is temporarily changed to the original requester. The stack pointer (a 7) passed
to the alarm subroutine is within the system process descriptor , and contains
about 1K of free space.

The kernel automatically deletes a process ' pending alarm requests when the
process terminates . In some cases , this may be undesirable . For example ,
assume an alarm is scheduled to shut off a disk drive motor if the disk has not
been accessed for 30 seconds . The alarm request will be made in the disk
device driver on behalf of the 1/0 process . This alarm will not work if it is
removed when the process exits.

One way to arrange for the alarm to have persistence is to execute U,e F$Alam,
request on behalf of the system process, rather than the current 1/ 0 process .
This may be accomplished by moving the system variable D_SysPrc to
D_Proc , executing the alarm request , and restoring D_Proc. For example:

move.1 D_Proc(a6),-(a7)
movea.1 D_SysPrc(a6),D_Proc(a6)
0S9 F$Alarm
/ * (error handling omitted) */
move.1 (a7)+,D_Proc(a6)

save current process pointer
impersonate system process

execute the alarm request

restore current process

WARNING: If this technique is used, it is essential to ensure that the module
containing U1e alarm subroutine remains in memory until after the alarm has
expired.

An alarm subroutine- must not perform any function that could result in any
kind of sleeping or queuing . This includes F$Sleep, F$Wait, F$Load,
F$Event(wait), F$100U, and F$Fork (if it might require F$Load). Other than
these functions, the alarm subroutine may perform any task.

One possible use of the system-state alarm function might be to poll a
positioning device, such as a mouse or light pen, every few system ticks . It is
recommended to be conservative when scheduling alarms and to make the
cycle as large as reasonably possible . Otherwise, a great deal of the system 's
available CPU time could be wasted .

The program listed in the following pages demonstrates how alarms may be
used.

OS-9 Training and Educauon

Alarms

IPC -24

lnterprocen Communications

The following example program can be compiled with this command:

$ cc deton.c

/*---
1 Psect Name:deton.c

I Function : demonstrate alarm to time out user input
--------- ---- ------------ , ---------------------------------*/

@_sysedit: equ 1

#include <stdio.h>
#include <errno.h>

#define TIHE(secs) ((secs<< 8) I Ox80000000)
#define PASSWORD "Ripley"

!*-------------- - ------ ----- --- -- ------ - --------------------*/
s1ghand(s1gcode)
{

)
/* just ignore the signal*/

!*--*/
main(argc.argv)
int argc:
char **argv:
{

register int
register int
register char
register char

secs - 0:
alarm_i d:
*p;
name[BO]:

intercept(sighand):
while (--argc) ·

if (*(p - *(++argv)) - • - •) {
if (*(++p) - '?')

printuse();
else exit(_errmsg(l, "error: unknown option - '%c'\n", *p));

) else if (secs - O)
secs - atoi(p):

else exit(_errmsg(l, "unknown arg - \"%s\"\n" . p)):

secs - secs? secs : 3;
printf("You have %d seconds to terminate self-destruct ... \n", secs):

/* set alarm to time out user input*/

Alarms

Alarms:
Example
Program

if ((alarm_id - alm_set(2, TIHE(secs))) -1) /* sigcode must be 2 or 3 */
exit(_errmsg(errno, "can't set alarm - ")) ; /* for 0S-9 2.3 */

if (gets(name) I= 0)
alm_delete(alarm _id) ;

else printf("\n") ;

OS-9 Training and Education

I* remove the alarm; it didn't expire*/

IPC-25

Interprocess Communications

}

if (_cmpnam(name, PASSWORD, 6) - 0)
printf("Have a nice day, %s.\n", PASSWORD);

else printf("ka BOOH\n");

exit(O);

!*--------- -------- ---- ----- ---- -------- ---------- ---- ------*/
/* printuse() - print help text to standard error */
printuse()
(

)

fprintf(stderr, "syntax: %s [secondsJ\n", _prgname()):
fprintf(stderr, "function: demonstrate use of alarm to time out I/0\n'');
fprfntf(stderr , "options: none\n");
exit(O);

OS-9 Training snd Education

Alarms

IPC-26

lnr.rprocea Communlcatlona

OS-9 events are multiple-value semaphores. They are used to synchronize
concurrent processes which are accessing shared resources such as files, data
modules, and CPU time. For exan1ple, if two processes need to communicate
with each other through a common data module , it may be necessary to
synchronize the processes so that only one updates the data module at a time .

Events do not transmit any information, although processes using the event
system may obtain information about the event , and use it as something other
than a signaling mechanism.

An OS-9 event is a 32-byte system global variable maintained by the system.
Each event contains the following fields, in this order:

Event ID

Event Name

Event Value

Walt Increment

This number and the event's array position are
used to create a unique ID. (2 bytes)

This name must be unique and cannot exceed 11
characters. (12 bytes)

This four-byte integer value has a range of 2 billion.
(4 bytes)

This value is added to the event value when a
process waits for the event. This value is set when
the event is created and does not change. (2 bytes)

Signal Increment This value is added to the event value when the

Link Count

Next Event

Previous Event

event is signaled . This value is set when the event
is created and does not change. (2 bytes)

This is the event use count. (2 bytes)

This is a pointer to the next process in the event
queue. An event queue is circular and includes all
processes waiting for the event . Each time the
event is signaled, this queue is searched . (4 bytes)

This is a pointer to the previous process in the event
queue. (4 bytes)

If a Microware C compiler is installed on the system, the events.h file is
included in the DEFS directory . This file lists the exact structure of an event.

OS-9 Training and Education

E~nts

Events

IPC -27

lnterproc.n Communlcatlona

The OS-9 event syst em provides the ability to create and delete events , to
permit processes to link / unlink events and obtain event information , to
suspend operation until an event occurs , and to implement various means of
signaling.

Events may be used directly as servi ce requests in assembly language
programs. The Microware C compiler supports a corresponding C call for each
event system call .

The two most common operations performed on events are Wait and Signal .
The Wait operation suspends the process until the event is within a specified
range , adds the wait increment to the current event value , and returns control
to the process just after the wait operation was called . The Signal operation
adds the signal increment to the current event value , checks for other processes
to awaken (depending on the all flag), and returns control to the process . These
operations allow a process to suspend itself while waiting for an event and to
reactivate when another process signals that the event has occurred .

For example , events can synchronize the use of a printer . You could initialize
the event value to one, the number of printers on the system . You could set the
signal increment to one and the wait increment to minus one (-1). When a
process wants to use the printer, it checks to see if one is available . That is, it
waits for the event value to be in the range (1, number of printers) . In this
example , the number of printers is one .

An event value within the specified range indicates that the printer is available ;
the printer is immediately marked as busy (tl1e event value is incremented by
-1, the wait increment) and the process is allowed to use it. An event value out
of range indicates that the printer is busy and the process is put to sleep on the
event queue .

When a process is finished with the printer , the process signals the event by
applying the signal increment to the event value . Then , the event queue is
searched for a process whose event value range includes the current event
value . If such a process is found, tlle process is activated , the wait increment is
applied to the event value , and the printer is used .

To coordinate sharing a non-sharable resource , user programs must :

<D Wait for the resource to become available .

~ Mark the resource as bus y.

@ Use the resource .

<i> Signal that the resource is no longer bus y.

OS-9 Training and Education

Events

Waff & Signal
Operation,

IPC-28

lnterprocen Communications

It is critical that the first two steps in this process are indivisible, because of
time-slicing. Otherwise, two processes could check an event and find it free.
Then, both processes would try to mark it busy. This would correspond to two
processes using a printer at the same time . The F$Event service request
prevents this from happening by performing both steps in the Wait operation.

The F$Event system call provides the mechanism to create named "events" for
this type of application. The name "event" was chosen instead of "semaphore"
because F$Event provides the flexibility to synchronize processes in a variety
of ways not usually found in semaphore primitives. OS--9' s event routines are
extremely efficient and suitable for use in real-time control applications.

Event variables require several maintenance functions as well as the Signal and
Wait operations. To keep the number of required system calls to a minimum,
all event operations are accessible through the F$Event system call.

Currently, functions exist to allow events to be created, deleted, linked,
unlinked and examined. Several variations of the Signal and Wait operations
are also provided.

Specific parameters and functions of each event operation are discussed under
F$Event in the OS-9 System Calls section of the OS-9 Technical Manus/ . The
"Ev$" function names are defined in the system definition file tunes.a. Actual
values for the function codes are resolved by linking with the relocatable
library sys.I or usr.l.

The following event functions are supported:

System Cs/I C Binding

Ev$ Crea t _ev_creat(ev_value, wait_inc, signal_inc, ev_name)
Creates new event.

Ev$Delet _ev_delete(ev_name)
Deletes existing event.

Ev$1nfo _ev_info(ev_index, ev_buffer)
Returns event information.

Ev$Link _ev_link(ev_name)
Links to existing event by name .

Ev$Pulse _ev_pulse(ev_id, ev_value, allflag)
Temporarily changes an event value and checks the event
queue, then changes back to the original value.

Ev$Read _ ev _read(ev _id)
Reads the event value without waiting.

Ev$Set _ev_set(ev_i d, ev_value, allflag)
Sets the event variable and checks the event queue.

OS-9 Training and Education

Events

F$Event
System Call

IPC-29

lnterproc•" CommunlcaUon•

System Call

Ev$SetR

CB/ndlng

_ev_setr(ev_id, ev_value, allflag)
Sets relative event variable and checks the event queue .

Ev$Signal _ev_signal(ev_id, allflag)
Increments and event value by the signal increment and
checks the event queue .

Ev$Unlnk _ ev _ unlink(ev _id)
Unlinks event.

Ev$Wait _ev_wait(ev_id, ev_min , ev_max)
Waits for event to occur.

Ev$WaltR _ev_wattr(ev_ld, ev_mln, ev_max)
Waits for relative to occur.

The following program uses a binary semaphore to illustrate the use of
events. To execute this example:

• Type the code into a file called sema 1 .c.

• Copy sema 1.c to sema2.c.

• Compile both programs.

• Run both programs with this command: sema 1 & sema2 .

The program creates an event with an initial value of 1 (free), a wait
increment of -1, and a signal increment of 1. Then, the program enters a
loop which waits on the event, prints a message , sleeps , and signals the
event. After ten times through the loop , the program unlinks itself from the
event and deletes the event from the system .

#include <stdio.h >
#include <events.h >
#include <errno.h>

char *ev_name - "semaevent": /* name of event to be used* /
int ev_id; / * id that will be used to access event *I

main()
(

int count - 0: /* loop counter* /

/ * create or link to the event* /
if ((ev_id - _ev_creat(l . -1 .1.ev_name)) = -1)

if ((ev_id - _ev_l ink (ev_name)) •= -1)
exit(_errmsg(errno,"error getting access to event - ")) ;

Events

Events:
Example

Program 1

OS-9 Training and Education IPC • 30

lnterproct1n Communlcatlona

}

while (count++< 10) {

}

/ * wait on the event* /
if (_ev_wait(ev_id, 1, 1) - -1)

exit(_err111sg(errno,"error waiting on the event - "));

_errmsg(0,"entering \ "critical section\"\n");

/* simulate doing something useful* /
sleep(2);

_errmsg(0,"ex1t1ng \"critical section \"\ n");

/* signal event (leaving critical section)*/
if (_ev_si gnal(ev_id, 0) - -1)

exitLerrmsg(errno ," error signalling the event - "));

/* simulate doing something other than critical section*/
sl eep(l):

/* unlink from event* /
if (_ev_unlink (ev_1d) - -1)

exit(_err•sg(errno ," error unlinking from event - ")):

/* delete event from system if this was the last process to unlink
from 1t */

if (_ev_delete(ev_name) - -1 && errno I- E_EVBUSY)
exit(_errmsg(errno,"error deleting event from system - ")):

_errmsg(0,"terminating normally \ n"):

OS-9 Training Bnd Education

Events

IPC-31

lnterprocen Communications

The following example uses events to synchronize two processes (taskl and
task2), thereby regulating access to CPU time . Taskl executes test #1 , and
task2 executes test #2 . To execute this example :

• Type the first program into a file called task1 .c.
• Type the second program into a file called task2 .c.

• Compile both programs .

• Run both programs with this command : task1 & task2 .

This example executes as follows :

<D Taskl creates an event with an initial value of 0, a wait increment of
0, and a signal increment of 1, and waits for the event value to
become 1. NOTE: The signal increm ent is added to the event value
each time the event is signalled .

~ While taskl is waiting, task.2 links to the event , signals the event
(event value= 1), and waits for the event value to become 2.

(3) While task.2 is waiting, taskl executes test #1, signals the event (event
value= 2), and waits for the event value to become 3.

@ While taskl is waiting, task.2 performs test #2 and signals the event
(event value= 3).

GJ Taskl and task2 perform test #1 and test #2 concurrently .

Performs
Taskl Waits for

task2 to finish Performs test #1
Waits for test #1 and
task2 to signal signals the

Creates event . the event. event. test #2 again .

• ,nmnmnlllfflfflffllilllfflHII • mtlltlltttnmtmmlHIIIIIIIIII
0 - N ft I I I I

I i i I
1. i 1. 1 ►' ►• ► ---- .. ,►1111111111111111111111111111111111111 ____ ~----■►►
Task2
Lin.ks to
event and
signal s the
event.

Waits for Performs
taskl to finish test #2 and
test #1. signals the

event.

Performs test #2
again .

Waiting : 8111111111111111111111111111111

Executing : •---•

Process Execution In Events Example 2

OS-9 Training end Education

Events

Events:
Example2

IPC-32

)

Interprocess Communications

/* taskl.c */

#include <stdio.h>
#include <events.h>
#include <errno.h>

char *ev_name - "exmplevent";
int ev_id;

/* event used by this program*/
/* id for event*/

main()
(

/* create or link to the event*/
if ((ev_id • _ev_creat(0.0,1 , ev_name)) - -1)

if ((ev_id • _ev_link(ev_name)) - -1)
ex1t(_errmsg(errno,"error getting access to event - ")):

/* wait on the event (waiting from Htask2" to signal event)*/
if (_ev_wait(ev_id, 1, 1) - -1)

exit(_errmsg(errno,"error waiting on the event - ")):
_errmsg{O,"doing \"test #1\"\n"):

/* simulate doing a test*/
s 1 eep(2):

_errmsg (O,"finished with \"test #1\", signalling event\n"):

/* signal event, finished with test #1 */
if (_ev_signal(ev_id, 0) - -1)

exit(_errmsg(errno,"error signalling the event - ")):

/* wait for event, waiting for task2 to finish test #2 */
if (_ev_wait(ev_id, 3, 3) - -1)

exit(_errmsg(errno,"error waiting on the event - ")):

_errmsg(O, "doing \"test Ill\" again\n"):

/* simulat e doing test #1 */
sleep(2):

_errmsg(O,"finished with \"test #1\" aga1n\n"):

_errmsg(O,"unlink ing /deleting the event\n"):

/* unlink from the event*/
if (_ev_unlink(ev_id) - -1)

exit(_errmsg(errno,"error unlinking from event - ")):

/* delete the event if necessary*/
if (_ev_delete(ev_name) - -1 && errno I= E_EVBUSY)

exit(_errmsg(errno,"error deleting event from system - "));

_errmsg(O,"terminating normally\n") ;

OS-9 Training and Education

Events

ta,kl.c

IPC-33

lnterproc•" Communlcat/ona

/* task2 .c */

#include <stdio.h>
#include <events.h>
#include <errno.h>

char *ev_name - "exmplevent";
int ev_1d;

I* event name*/
/* id used to access event*/

main()
{

)

/* create or link to the event*/
if ((ev_id - _ev_creat(0,0,1,ev_name)) - -1)

if ((ev_id - _ev_link(ev_name)) - -1)
exit(_errmsg(errno."error getting access to event - ")):

/* signal the event, tell task 1 it is okay to start*/
if (_ev_signal(ev_id, 0) - -1)

ex1t(_errmsg(errno."error signalling the event - "));

/* wait on the event. wait for taskl to finish test #1 */
if (_ev_wa1t(ev_1d, 2. 2) - -1)

exit(_errmsg(errno,"error waiting on the event - ")):

_errmsg(0,"doing \"test fl\"\n");

/* simulate doing test #2 */
sleep(2);

_errmsg(0,"finished with \"test #2\", signalling event\n"):

/* signal event, tells taskl to do test #1 again*/
1f (_ev_s1gnal(ev_1d, 0) - -1)

ex1t(_errmsg(errno."error signalling the event - "}):

_errmsg(0,"doing \"test #2\" again\n"};

/* simulate doing test #2 */
s1eep(2);

_errmsg(0,"finished with \"test 112\" again\n");

_errmsg(0,"unlinking/deleting the event\n"}:

/* unlink from event*/
if (_ev_unlink(ev_id) - -1)

exit(_errmsg(errno,"error unlinking from event - ")):

I* delete event if necessary*/
if (_ev_delete(ev_name) - -1 && errno I- E_EVBUSY)

exit(_errmsg(errno,"error deleting event from system - ")) :

_errmsg(0,"terminating normally\n"):

OS-9 Training and Education

Events

tmk2.c

IPC-34

